[1]
|
Zephoria Incorporation (2015) Top 20 Facebook Statistics. Zephoria Incorporation, Sarasota.
|
[2]
|
Yang, B.S. and Cardie, C. (2014) Context-Aware Learning for Sentence-Level Sentiment Analysis with Posterior Regularization. Proceedings of ACL, Baltimore Maryland, June 2014, 325-335.
|
[3]
|
Richard, S., Perelygin, A., Wu, J., Chuang, J., Manning, C., Ng, A. and Potts, C. (2013) Recursive Deep Models for Semantic Compositionality over a Sentiment Treebank. Conference on Empirical Methods on Natural Language Processing (EMNLP), Seattle Washington, October 2013, 1631-1642.
|
[4]
|
Lev, B. and Thiagarajan, S.R. (1993) Fundamental Information Analysis. Journal of Accounting Research, 31, 190-215.
http://dx.doi.org/10.2307/2491270
|
[5]
|
Wong, W.-K., Manzur, M. and Chew, B.-K. (2003) How Rewarding Is Technical Analysis? Evidence from Singapore Stock Market. Applied Financial Economics, 13, 543-551. http://dx.doi.org/10.1080/0960310022000020906
|
[6]
|
William, C. and Trenkle, J. (1994) N-Gram-Based Text Categorization. Proceedings of Annual Symposium on Document Analysis and Information Retrieval, Las Vegas Nevada, April 1994, 161-175.
|
[7]
|
Tomas, M., Chen, K., Corrado, G. and Dean, J. (2013) Efficient Estimation of Word Representations in Vector Space. Computation and Language, arXiv preprint arXiv: 1301.3781.
|
[8]
|
Tomas, M., Sutskever, I., Chen, K., Corrado, G. and Dean, J. (2013) Distributed Representations of Words and Phrases and Their Compositionality. Proceedings of Neural Information Processing Systems, Lake Tahoe, December 2013, 3111-3119.
|
[9]
|
Tomas, M. (2013) Linguistic Regularities in Continuous Space Word Representations. Proceedings of North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Westin Peachtree Plaza Hotel, 9-14 June 2013, 746-751.
|
[10]
|
Zhang, X. and LeCun, Y. (2015) Text Understanding from Scratch. Computation and Language, arXiv preprint arXiv: 1502.01710.
|
[11]
|
Luciano, B. and Feng, J.L. (2010) Robust Sentiment Detection on Twitter from Biased and Noisy Data. Proceedings of the 23rd International Conference on Computational Linguistics, Beijing, 23-27 August 2010, 36-44.
|
[12]
|
Tang, D.Y., Wei, F.R., Qin, B., Liu, T. and Zhou, M. (2014) Coooolll: A Deep Learning System for Twitter Sentiment Classification. Proceedings of the 8th International Workshop on Semantic Evaluation, Dublin, 23-24 August 2014, 208-212.
|
[13]
|
Rui, H.X., Liu, Y.Z. and Whinston, A. (2013) Whose and What Chatter Matters? The Effect of Tweets on Movie Sales. Decision Support Systems, 56, 863-870. http://dx.doi.org/10.1016/j.dss.2012.12.022
|
[14]
|
Gregoire, M., Mikolov, T., Ranzato, M. and Bengio, Y. (2014) Ensemble of Generative and Discriminative Techniques for Sentiment Analysis of Movie Reviews. Computation and Language, arXiv preprint arXiv: 1412.5335.
|
[15]
|
Johan, B., Mao, H.N. and Zeng, X.J. (2011) Twitter Mood Predicts the Stock Market. Journal of Computational Science, 2, 1-8. http://dx.doi.org/10.1016/j.jocs.2010.12.007
|
[16]
|
Si, J.F., Mukherjee, A., Liu, B., Pan, S., Li, Q. and Li, H.Y. (2014) Exploiting Social Relations and Sentiment for Stock Prediction. Proceedings of the Conference on Empirical Methods in Natural Language Processing, Doha, 25-29 October 2014, 1139-1145.
|