[1]
|
Wijesiriwardana, R. Comb Powering Conductors Based Flexible Thermal Radiator. US2009/0223946 A1.
|
[2]
|
Rnatanen, J., Alfthan, N., Impio, J., Karinsalo, T., Malmivaara, M., Matala, R., Makinen, M., Reho, A., Talvenmaa, P., Tasanen, M. and Vanhala, J. (2000) Smart Clothing for the Arctic Environment. Proceedings of the IEEE Fourth International Symposium on Wearable Computers, Atlanta, 16-17 October 2000, 15-23.
http://dx.doi.org/10.1109/ISWC.2000.888454
|
[3]
|
www.gorix.com
|
[4]
|
Baltopoulos, A., Athanasopoulos, N., Fotiou, I., Vavouliotis, A. and Kostopoulos, V. (2013) Sensing Strain and Damage in Polyurathane—MWCNT Nano Composite Foams Using Electrical Measurements. Express Polymer Letters, 7, 40-54. http://dx.doi.org/10.3144/expresspolymlett.2013.4
|
[5]
|
Kraus, R.G. and Quick, J.R. Non Woven Heating Element. US 4534886 A.
|
[6]
|
www.noblebiomaterials.com
|
[7]
|
Raz, S. (1991) Flat Knitting, the New Generation.
|
[8]
|
Gutowski, T.G. (1997) Advanced Composite Manufacturing. John Wiley & Sons Inc.
|
[9]
|
Raz, S. (1998) The Karl Mayer Guide to Technical Textiles. Karl Mayer Textilmaschinenfabrik GmbH.
|
[10]
|
Wijesiriwardana, R., Dias, T. and Mukhopadhyay, S. Resistive Fibre-Meshed Transducers. IEEE ISWC03, 200-209.
|
[11]
|
Yan, D.X., Dai, K., Xiang, Z.D., Li, Z.M., Xu, J. and Zhang, W.Q. (2011) Electrical Conductivity and Major Mechanical and Thermal Properties of Carbon Nanotube Filed Polyurethane Foams. Journal of Applied Polymer Science, 120, 3014-3019. http://dx.doi.org/10.1002/app.33437
|
[12]
|
Li, F.K., Qi, L.Y., Yang, J.P., Xu, M., Luo, X.L. and Ma, D.Z. (2000) Polyurethene Conducting Carbon Black Composites: Structure, Electric, Conductivity, Strain Recovery Behavior and Their Relationships. Journal of Applied Polymer Science, 75, 68-77. http://dx.doi.org/10.1002/(SICI)1097-4628(20000103)75:1<68::AID-APP8>3.0.CO;2-I
|
[13]
|
Chiang, T.-Y., Banerjee, K. and Saraswat, K.C. Compact Modeling and SPICE-Based Simulation for Electrothermal Analysis of Multilevel ULSI Inter-connects.
|
[14]
|
Curtis, E.B. and Morrow, J.A. (2000) Inverse Problems for Electrical. Networks. Series on Applied Mathematics, 13, 1-10. http://dx.doi.org/10.1142/9789812793966_0001
|
[15]
|
Churchill, R.V. and Brown, J.W. (1990) Complex Variables and Applications. McGraw-Hill, New York.
|
[16]
|
Cheney, M., Isaacson, D., Newell, J.C., Simske, S. and Goble, J. (1990) NOSER: An Algorithm for Solving the Inverse Conductivity Problem. International Journal of Imaging Systems and Technology, 2, 66-75.
http://dx.doi.org/10.1002/ima.1850020203
|
[17]
|
Sylvester, J. and Uhlmann, G. (1987) A Global Uniqueness Theorem for an Inverse Boundary Value Problem. Annals of Mathematics, 125, 153-169. http://dx.doi.org/10.2307/1971291
|
[18]
|
Kohn, R.V. and Vogelius, M. (1984) Determining Conductivity by Boundary Measurements. Communications on Pure and Applied Ma-thematics, 37, 289-298. http://dx.doi.org/10.1002/cpa.3160370302
|
[19]
|
Fung, Y. (1965) Foundations of Solid Mechanics. Prentice Hall, Inc, Englewood Cliffs.
|
[20]
|
Jing, Q. and Fedder, G. (1998) NODAS 1.3—Nodal Design of Actuators and Sensors. Proceedings of IEEE/VIUF International Workshop on Behavioral Modeling and Simulation, Orlando.
|
[21]
|
Kovalenko, A. (1969) Thermoelasticity—Basic Theory and Applications. Walters-Noordho Publishing Groningen, The Netherlands.
|
[22]
|
Mankame, N. and Ananthasuresh, G. (2000) Effect of Thermal Boundary Conditions and Scale on the Behavior of Electro-Thermal-Compliant Micro Mechanisms. Proceedings of Modeling and Simulation of Microsystems MSM 2000, San Diego, 2000, 609-612.
|
[23]
|
Mills, A. (1999) Basic Heat and Mass Transfer. Prentice Hall, Upper Saddle River.
|
[24]
|
Sigmund, O. (1998) Topology Optimization in Multiphysics Problems. Proceedings of 7th AIAA/USAF/NASA/ISSMO Symposium, St. Louis, 1492-1500. http://dx.doi.org/10.2514/6.1998-4905
|