Share This Article:

Effect of Annealing Temperature on Prepared Nanoparticles Li-Ferrite Using Positron Annihilation Lifetime Technique

Abstract Full-Text HTML XML Download Download as PDF (Size:500KB) PP. 436-444
DOI: 10.4236/msa.2015.65047    4,627 Downloads   5,244 Views   Citations

ABSTRACT

Lithium ferrite nanoparticles were synthesized by a sol-gel auto-combustion method. For prepared samples, the nanograins were increased with increasing the annealing temperature. Positron annihilation lifetime spectroscopy (PALS) was used to study defects at different sites for nanograins Li-ferrites. The analysis of the PAL spectrum indicated two lifetime components τ1 and τ2 for the annihilation of the positrons, and their corresponding relative intensities I1% and I2%. For nanoparticles Li-ferrite there are correlations between: 1) I2, τ2, annealing temperature and the total porosity (Pt) with the grain size; 2) I1, μi, Ms and the homogeneity with grain size.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Samy, A. and Aly, E. (2015) Effect of Annealing Temperature on Prepared Nanoparticles Li-Ferrite Using Positron Annihilation Lifetime Technique. Materials Sciences and Applications, 6, 436-444. doi: 10.4236/msa.2015.65047.

References

[1] Baba, P.D., Argentina, G.M., Courney, W.E., Dionne, G.F. and Temme, D.H. (1972) Fabrication and Properties of Microwave Lithium Ferrites. IEEE Transactions on Magnetics, 8, 83-94.
http://dx.doi.org/10.1109/TMAG.1972.1067269
[2] George, M., Nair, S.S., John, A.M., Joy, P.A. and Anantharaman, M.R. (2006) Structural, Magnetic and Electric Properties of the Sol-Gel Prepar Li0.5Fe2.5O4 Fine Particles. Journal of Physics D: Applied Physics, 39, 900-910.
http://dx.doi.org/10.1088/0022-3727/39/5/002
[3] Dionne, G.F. (1997) Properties of Ferrites at Low Temperatures (Invited). Journal of Applied Physics, 81, 5064-5069.
http://dx.doi.org/10.1063/1.364509
[4] Majetich, S.A. and Sachan, M. (2006) Magnetostatic Interaction in Magnetic Nanoparticle Assemblies: Energy, Time and Length Scales. Journal of Physics D: Applied Physics, 39, R407-R422.
http://dx.doi.org/10.1088/0022-3727/39/21/r02
[5] Yang, H., Wang, Z., Song, L., Zhao, M., Wang, J. and Luo, H. (1996) A Study on the Coercivity and Magnetic Anisotropy of the Lithium Ferrite Nanocrystallite. Journal of Physics D: Applied Physics, 29, 2574-2578.
http://dx.doi.org/10.1088/0022-3727/29/10/008
[6] Goya, G.F., Berquo, T.S., Fonseca, F.C. and Morales, M.P. (2003) Static and Dynamic Magnetic Properties of Spherical Magnetic Nanoparticles. Journal of Applied Physics, 94, 3520-3528.
http://dx.doi.org/10.1063/1.1599959
[7] Kodama, R.H. (1999) Magnetic Nanoparticle. Journal of Magnetism and Magnetic Materials, 200, 359-372.
http://dx.doi.org/10.1016/S0304-8853(99)00347-9
[8] Batlle, X. and Labarta, A. (2002) Finite-Size Effects in Fine Particles: Magnetic and Transport Properties. Journal of Physics D: Applied Physics, 35, R15-R42.
http://dx.doi.org/10.1088/0022-3727/35/6/201
[9] Shirsath, S.E., Kadam, R.H., Gaikwad, A.S., Ghasemi, A. and Morisalo, A. (2011) Effect of Sintering Temperature and the Particle Size on the Structural and Magnetic Properties of Nanocrystalline Li0.5Fe2.5O4. Journal of Magnetism and Magnetic Materials, 323, 3104-3108.
http://dx.doi.org/10.1016/j.jmmm.2011.06.065
[10] Jovic, N., Antic, B., Goya, G.F. and Spasojevic, V. (2012) Magnetic Properties of Lithium Ferrite Nanoparticles with a Core/Shell Structure. Current Nanoscience, 8, 1-8.
http://dx.doi.org/10.2174/157341312802884391
[11] Kechrakos, D. and Trohidou, K.N. (1998) Magnetic Properties of Dipolar Interacting Single-Domain Particles. Physical Review B, 58, 12169-12177.
http://dx.doi.org/10.1103/PhysRevB.58.12169
[12] Sahoo, S.C., Venkataramani, N., Shiva, P., Murtaza, B. and Krishnan, R. (2010) Pulse Laser Deposited Nanocrystalline Cobalt Ferrite Thin Films. Journal of Nanoscience and Nanotechnology, 10, 3112-3117.
http://dx.doi.org/10.1166/jnn.2010.2173
[13] Han, Y.C., Cha, H.G., Kim, C.W., Ji, E.S., Kim, Y.H., Kang, D.I. and Kang, Y.S. (2009) The Influence of Low Temperature on Gamma-Ray Irradiated Permanent Magnets. Journal of Nanoscience and Nanotechnology, 9, 6953-6956.
http://dx.doi.org/10.1166/jnn.2009.1622
[14] Zhang, Y., Fei, C., Liu, Y., Wang, R., Yan, G., Xiong, R. and Shi, J. (2010) The Effect of Surface Modification on the Magnetic Properties of CoFe2O4 Nano-Particles Synthesized by the Hydrothermal Method. Journal of Nanoscience and Nanotechnology, 10, 6395-6399.
http://dx.doi.org/10.1166/jnn.2010.2518
[15] Rai, A. and Banerjee, M. (2008) XRD and Mossbauer Spectroscopy Investigation of Mn Substituted CuFe2O4 Nanoparticles. Journal of Nanoscience and Nanotechnology, 8, 4172-4175.
http://dx.doi.org/10.1166/jnn.2008.AN28
[16] Pathak, T.K., Buch, J.J.U., Trivedi, U.N., Joshi, H.H. and Modi, K.B. (2008) Infrared Spectroscopy and Elastic Properties of Nanocrystalline Mg-Mn Ferrites Prepared by Co-Precipitation Technique. Journal of Nanoscience and Nanotechnology, 8, 4181-4187.
http://dx.doi.org/10.1166/jnn.2008.AN33
[17] Deka, S. and Joy, P.A. (2008) Superparamagnetic Nanocrystalline ZnFe2O4 with a Very High Curie Temperature. Journal of Nanoscience and Nanotechnology, 8, 3955-3958.
http://dx.doi.org/10.1166/jnn.2008.201
[18] Raming, T.P., Winnubst, A.J.A., Van Kats, C.M. and Philipse, P. (2002) The Synthesis and Magnetic Properties of Nanosized Hematite (α-Fe2O3) Particles. Journal of Colloid and Interface Science, 249, 346-350.
http://dx.doi.org/10.1006/jcis.2001.8194
[19] Agami, W.R., Ashmawy, M.A. and Sattar, A.A. (2014) Structural, IR, and Magnetic Studies of Annealed Li-Ferrite Nanoparticles. Journal of Materials Engineering and Performance, 23, 604-610.
http://dx.doi.org/10.1007/s11665-013-0754-1
[20] Somoza, A. (2001) Status of Positron Annihilation Studies of Age Hardening in Aluminum Alloys. Materials Science Forum, 363-365, 9-14.
http://dx.doi.org/10.4028/www.scientific.net/MSF.363-365.9
[21] Misheva, M., Djourelov, N., Margaca, F.M.A. and Miranda Salvado, I.M. (2000) Positronium Decay Study of Zirconia-Silica Sol-Gels. Journal of Non-Crystalline Solids, 272, 209-217.
http://dx.doi.org/10.1016/S0022-3093(00)00153-8
[22] Hautojarvi, P., Corbel, C., Dupasquier, A. and Mills, A.P. (1995) Positron Spectroscopy of Solids. IOS Press, Amsterdam.
[23] Fradin, J., Thome, T., Grynszpan, R.I., Thome, L., Anwand, W. and Brauer, G. (2001) Precursory Stage of Damage Production in Argon Irradiated Cubic Zirconia. Nuclear Instruments and Methods in Physics Research Section B, 175-177, 516-520.
http://dx.doi.org/10.1016/S0168-583X(00)00643-1
[24] Ghosh, S., Nambissan, P.M.G. and Bhattacharya, R. (2004) In3+ Substitution Effects and Defect Distribution in Li0.25Mg0.5Mn0.1Fe2.15-xInxO4 Studied by Positron Annihilation and Mossbauer Spectroscopy. Physica B: Condensed Matter, 353, 75-81.
http://dx.doi.org/10.1016/j.physb.2004.09.003
[25] Cullity, B.D. and Stock, S.R. (2001) Elements of X-Ray Diffraction. 3rd Edition, Prentice-Hall, Inc., New York.
[26] Kansy, J. (1996) Microcomputer Program for Analysis of Positron Annihilation Lifetime Spectra. Nuclear Instruments and Methods in Physics Research Section A, 374, 235-244.
[27] Hautojarvi, P. (1979) Positrons in Solids. Springer, Berlin.
http://dx.doi.org/10.1007/978-3-642-81316-0
[28] Samy, A.M., Mostafa, N. and Gomaa, E. (2006) Effect of Rare Earth Substitutions on Some Physical Properties of Mn-Zn Ferrite Studied by Positron Annihilation Lifetime Spectroscopy. Journal Applied Surface Science, 252, 3323- 3326.
http://dx.doi.org/10.1016/j.apsusc.2005.08.102
[29] Samy, A.M., Gomaa, E. and Mostafa, N. (2010) Study the Properties of Cu-Zn Ferrite Substituted with Rare Earth Ions by Positron Annihilation Analysis. The Open Ceramic Science Journal, 1, 1-4.
http://dx.doi.org/10.2174/1876395201001010001
[30] Jiang, J., Yang, Y.M. and Li, L.C. (2008) Effect of Heat Treatment on the Magnetic Properties of Nanocrystalline Spinel Li-Ni Ferrite Prepared by a Simple Soft Chemistry Route. Journal of Alloys and Compounds, 464, 370-373.
http://dx.doi.org/10.1016/j.jallcom.2007.09.128
[31] Aly, E.H. and Samy, A.M. (2015) A Study of Some Properties for Substituted Li-Ferrite Using Positron Annihilation Lifetime Technique. Results in Physics, 5, 80-84.
http://dx.doi.org/10.1016/j.rinp.2015.03.001
[32] Jovic, N.G., Masadeh, A.S., Kremenovic, A.S., Antic, B.V., Blanusa, J.L., Cvjeticanin, N.D., Goya, G.F., Vittori, A.M. and Bozin, E.S. (2009) Effects of Thermal Annealing on Structural and Magnetic Properties of Lithium Ferrite Nanoparticles. The Journal of Physical Chemistry C, 113, 20559-20567.
http://dx.doi.org/10.1021/jp907559y
[33] Jovic, N., Antic, B., Gerardo, F.G. and Spasojevic, V. (2012) Magnetic Properties of Lithium Ferrite Nanoparticles with a Core/Shell Structure. Current Nanoscience, 8, 651-658.
http://dx.doi.org/10.2174/157341312802884391
[34] El-sayed, M.H., Samy, A.M. and Sattar, A.A. (2004) Infra-Red and Magnetic Studies of Nb-Doped Li-Ferrites. Physica Status Solidi (A), 201, 1-7.
http://dx.doi.org/10.1002/pssa.200406818
[35] Samy, A.M. (2011) Magnetic and Electrical Studies of V, Cd and Gd Ions Substituted Li-Ferrite. Journal of Materials Science and Engineering with Advanced technology, 4, 133-147.
http://scientificadvances.co.in
[36] Shirsath, S.E., Kadam, R.H., Gaikwad, A.S., Ghasemi, A. and Morisako, A. (2011) Effect of Sintering Temperature and the Particle Size on the Structural and Magnetic Properties of Nanocrystalline Li0.5Fe2.5O4. Journal of Magnetism and Magnetic Materials, 323, 3104-3108.
http://dx.doi.org/10.1016/j.jmmm.2011.06.065

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.