Quantum Corrections on Tunneling Radiation by the Generalized Uncertainty Principle

Abstract Full-Text HTML XML Download Download as PDF (Size:267KB) PP. 578-583
DOI: 10.4236/jmp.2015.65063    2,958 Downloads   3,399 Views   Citations

ABSTRACT

Based on the generalized uncertainty principle (GUP), the researchers find that the quantum gravity affects the Klein-Gordon equation exactly. Hence, the Klein-Gordon equation which is corrected by GUP will be more suitable on the expression of the tunneling behavior. Then, the corrected Hawking temperature of the GHS black hole is obtained. After analyzing this result, we find out that the Hawking temperature is not only related to the mass of black hole, but also related to the mass and energy of outgoing fermions. Finally, we infer that the Hawking radiation will be stopped, and the remnants of black holes exist naturally.

Cite this paper

Chen, B. , Li, G. , Zu, X. and Tang, J. (2015) Quantum Corrections on Tunneling Radiation by the Generalized Uncertainty Principle. Journal of Modern Physics, 6, 578-583. doi: 10.4236/jmp.2015.65063.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Hawking, S.W. (1974) Nature, 30, 248.
[2] Hawking, SW. (1975) Communications in Mathematical Physics, 43, 199-220.
http://dx.doi.org/10.1007/BF02345020
[3] Zhao, Z. (1992) Chinese Physics Letters, 9, 401.
[4] Kraus, P. and Wilczek, F. (1995) Nuclear Physics B, 433, 403. [arXiv:9408003[gr-qc]
[5] Kraus, P. and Wilczek, F. (1995) Nuclear Physics B, 437, 231. [arXiv:9411219[hep-th]
[6] Kerner, R. and Mann, R.B. (2006) Physical Review D, 73, Article ID: 104010.
http://dx.doi.org/10.1103/PhysRevD.73.104010
[7] Li, G.P., Zhou, Y.G., Zu, X.T. (2013) International Journal of Theoretical Physics, 52, 4025-4031.
http://dx.doi.org/10.1007/s10773-013-1716-y
[8] Chen, D.Y. and Yang, S.Z. (2007) International Journal of Modern Physics A, 22, 5173.
http://dx.doi.org/10.1142/S0217751X07038207
[9] Lin, K. and Yang, S.Z. (2009) Physical Review D, 79, Article ID: 064035.
[10] Chen, D.Y. and Yang, S.Z. (2007) International Journal of Modern Physics A, 22, 5173.
http://dx.doi.org/10.1142/S0217751X07038207
[11] Jiang, Q.Q. (2008) Physical Review D, 78, Article ID: 044009.
http://dx.doi.org/10.1103/PhysRevD.78.044009
[12] Chen, D.Y. and Yang, S.Z. (2007) General Relativity and Gravitation, 39, 1503-1515.
http://dx.doi.org/10.1007/s10714-007-0478-3
[13] Townsend, P.K. (1977) Physical Review D, 15, 2795-2801.
http://dx.doi.org/10.1103/PhysRevD.15.2795
[14] Amati, D., Ciafaloni, M. and Veneziano, G. (1989) Physics Letters B, 216, 41.
[15] Konishi, K., Paffuti, G. and Provero, P. (1990) Physics Letters B, 234, 276-284.
http://dx.doi.org/10.1016/0370-2693(90)91927-4
[16] Garay, L.J. (1995) International Journal of Modern Physics A, 10, 145. [arXiv:9403008[gr-qc]]
[17] Amelino-Camelia, G. (2002) International Journal of Modern Physics D, 11, 35. [arXiv:0012051[gr-qc]]
[18] Kempf, A., Mangano, G. and Mann, R.B. (1995) Physical Review D, 52, 1108. [arXiv:9412167[hep-th]]
[19] Chen, D.Y., Wu, H.W. and Yang, H.T. (2013) Advances in High Energy Physics. [arXiv:1305.7104[gr-qc]]
[20] Nozari, K. and Saghafi, S. (2012) Journal of High Energy Physics, 11, 5. [arXiv:1206.5621[hep-th]]
[21] Chen, D.Y., Wu, H.W. and Yang, H.T. (2014) JCAP, 3, 36.
[22] Chen, D.Y. (2014) European Physical Journal C, 74, 2687.
http://dx.doi.org/10.1140/epjc/s10052-013-2687-0
[23] Chen, D.Y., Jiang, Q.Q., Wang, P. and Yang, H.T. (2013) Journal of High Energy Physics, 1311, 176.
http://dx.doi.org/10.1007/JHEP11(2013)176
[24] Chen, D.Y. and Li, Z.H. (2014) Advances in High Energy Physics, 2014, Article ID: 620157.
[25] Wang, P., Yang, H.T. and Ying, S.X. (2014) arXiv:1410.5065[gr-qc].

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.