Share This Article:

The Potential of Compact Libs System with Multi-Pulse Nd:YAG Laser for Bacteria Identification

Abstract Full-Text HTML XML Download Download as PDF (Size:960KB) PP. 207-212
DOI: 10.4236/jbise.2015.83020    3,199 Downloads   3,822 Views   Citations

ABSTRACT

This work shows the potential of a very compact, portable Laser Induced-Breakdown Spectroscopy (LIBS) system that includes low cost and compact Nd:YAG laser, intended for use in fieldwork identification of bacteria. This device allows for the generation of 2 - 4 pulses per laser shot, with a maximum energy of 120 mJ per pulse. Each pulse has a duration of 60 ns, and the total duration of the train of pulses is 180 μs. The device dimensions including the power supply are 50 × 20 × 140 cm, which indicates that can be utilized as a portable LIBS system in field conditions. The spectra captured on two different bacteria shows the capability of identification.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Flores, A. , Sanchez, A. , Villarreal, A. , Sauz, F. , Cabrera, L. and Reyes, T. (2015) The Potential of Compact Libs System with Multi-Pulse Nd:YAG Laser for Bacteria Identification. Journal of Biomedical Science and Engineering, 8, 207-212. doi: 10.4236/jbise.2015.83020.

References

[1] Kostic, T., Butaye, P. and Schrenzel, J. (2009) Detection of Highly Dangerous Pathogens: Microarray Methods for BSL 3 and BSL 4 Agents. John Wiley & Sons, New York.
http://dx.doi.org/10.1002/9783527626687
[2] Snydman, D.R. (1992) Book Review. New England Journal of Medicine, 327, 1326-1326.
http://dx.doi.org/10.1056/NEJM199210293271825
[3] Wang, D., Coscoy, L., Zylberberg, M., Avila, P.C., Boushey, H.A., Ganem, D., et al. (2002) Microarray-Based Detection and Genotyping of Viral Pathogens. Proceedings of the National Academy of Sciences, 99, 15687-15692.
[4] Rusak, D.A., Castle, B.C., Smith, B.W. and Winefordner, J.D. (1997) Fundamentals and Applications of Laser-Induced Breakdown Spectroscopy. Critical Reviews in Analytical Chemistry, 27, 257-290.
[5] Cremers, D.A. and Radziemski, L.J. (2013) Handbook of Laser-Induced Breakdown Spectroscopy, Elemental Analysis. 2nd Edition, Wiley Online Library.
http://dx.doi.org/10.1002/9781118567371
[6] Hahn, D.W. and Omenetto, N. (2012) Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields. Applied Spectroscopy, 66, 347-419.
http://dx.doi.org/10.1366/11-06574
[7] Pasquini, C., Cortez, J., Silva, L.M.C. and Gonzaga, F.B. (2007) Laser Induced Breakdown Spectroscopy. Journal of the Brazilian Chemical Society, 18, 463-512.
[8] Radziemski, L.J. (1994) Review of Selected Analytical Applications of Laser Plasmas and Laser Ablation, 1987-1994. Microchemical Journal, 50, 218-234.
[9] Gautier, C., Fichet, P., Menut, D., Lacour, J.L., L’Hermite, D. and Dubessy, J. (2005) Quantification of the Intensity Enhancements for the Double-Pulse Laser-Induced Breakdown Spectroscopy in the Orthogonal Beam Geometry. Spectrochimica Acta—Part B Atomic Spectroscopy, 60, 265-276.
http://dx.doi.org/10.1016/j.sab.2005.01.006
[10] Le Drogoff, B., Margot, J., Vidal, F., Laville, S., Chaker, M., Sabsabi, M., et al. (2004) Influence of the Laser Pulse Duration on Laser-Produced Plasma Properties. Plasma Sources Science and Technology, 13, 223-230.
http://dx.doi.org/10.1088/0963-0252/13/2/005
[11] Elsayed, K., Imam, H., Harfoosh, A., Hassebo, Y., Elbaz, Y., Aziz, M., et al. (2012) Design and Construction of Q-Switched Nd:YAG Laser System for LIBS Measurements. Optics & Laser Technology, 44, 130-135.
[12] Penaloza-Mendoza, Y. and Ponce-Cabrera, L. (2014) Comparison on Morphological and Optical Properties of TiO2 Thin Films Grown by Single-Pulse and Multi-Pulse Laser Ablation. Journal of Surface Engineered Materials and Advanced Technology, 5, 17.
[13] Morris, J.A. and Pollock, C.R. (1990) Passive Q Switching of a Diode-Pumped Nd:YAG Laser with a Saturable Absorber. Optics Letters, 15, 440-442.
http://dx.doi.org/10.1364/OL.15.000440
[14] Galbács, G., Jedlinszki, N., Herrera, K., Omenetto, N., Smith, B.W. and Winefordner, J.D. (2010) A Study of Ablation, Spatial, and Temporal Characteristics of Laser-Induced Plasmas Generated by Multiple Collinear Pulses. Applied Spectroscopy, 64, 161-172.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.