Vection Is Unaffected by Circadian Rhythms


We examined the effect of circadian rhythms on self-motion perception (vection). We measured the strength of vection (i.e. latency, duration, and magnitude of vection) every three hours from 9 AM to 9 PM. The results showed that vection was similar at all times measured. Thus, we concluded that vection was unaffected by circadian clock.

Share and Cite:

Ogawa, M. , Ito, H. & Seno, T. (2015). Vection Is Unaffected by Circadian Rhythms. Psychology, 6, 440-446. doi: 10.4236/psych.2015.64041.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Allison, R. S., Zacher, J. E., Kirollos, R., Guterman, P. S., & Palmisano. S. (2012). Perception of Smooth and Perturbed Vection in Short-Duration Microgravity. Experimental Brain Research, 223, 479-487.
[2] Araujo, D. F., Soares, C. S., & de Almondes, K. M. (2013). Relation between Sleep and Visuospatial Skills in Students from a Public School. Estudos de Psicologia, 18, 109-116.
[3] Aschoff, J. (1984). Circadian Timing. Annals of the New York Academy of Sciences, 423, 442-468.
[4] Aschoff, J. (1998). Human Perception of Short and Long Time Intervals: Its Correlation with Body Temperature and the Duration of Wake Time. Journal of Biological Rhythms, 13, 437-442.
[5] Aschoff, J., & Daan, S. (2009). Human Time Perception in Temporal Isolation: Effects of Illumination Intensity. Chronobiology International, 14, 585-596.
[6] Bonnet, M. (2002). Sleep Deprivation. In M. H. Kryger, T. Roth, & W. C. Dement (Eds.), Principles and Practice of Sleep Medicine (pp. 53-71). Philadelphia, PA: W.B. Saunders Company.
[7] Bougard, C., Lepelley, M. C., & Davenne, D. (2011). The Influences of Time-of-Day and Sleep Deprivation on Postural Control. Experimental Brain Research, 209, 109-115.
[8] Brandt, T., Dichgans, J., & Koenig, E. (1973). Differential Effects of Central versus Peripheral Vision on Egocentric and Exocentric Motion Perception. Experimental Brain Research, 16, 476-491.
[9] Chee, M. W. L., & Chuah, Y. M. L. (2007). Functional Neuroimaging and Behavioral Correlates of Capacity Decline in Visual Short-Term Memory after Sleep Deprivation. Proceedings of the National Academy of Sciences of the United States of America, 104, 9487-9492.
[10] Daan, S., Beersma, D., & Borbely, A. (1984). Timing of Human Sleep: Recovery Process Gated by a Circadian Pacemaker. American Journal of Physics, 246, 161-178.
[11] Dichgans, J., & Brandt, T. (1978). Visual-Vestibular Interaction: Effect on Self-Motion Perception and Postural Control. In R. Held, H. W. Leibowitz, & H. L. Tueber (Eds.), Handbook of Sensory Physiology (pp. 755-804). Berlin: Springer-Verlag.
[12] Fischer, M. H., & Kornmüller, A. E. (1930). Optokinetischausgeloste Bewegungswahrnehmung und Optokinetischer Nystagmus. Journal fürPsychologie und Neurologie (Leipzig), 41, 273-308.
[13] Haibach, P., Slobounov, S., & Newell, K. (2009). Egomotion and Vection in Young and Elderly Adults. Gerontology, 55, 637-643.
[14] Held, R., Dichgans, J., & Bauer, J. (1975). Characteristics of Moving Visual Scenes Influencing Spatial Orientation. Vision Research, 15, 357-365.
[15] Howard, I. P. (1982). Human Visual Orientation. Chichester: Wiley.
[16] Kuriyama, K., Uchiyama, M., Suzuki, H., Tagaya, H., Ozaki, A., Aritake, S., Kameid, Y., Nishikawa, T., & Takahashi, K. (2003). Circadian Fluctuation of Time Perception in Healthy Human Subjects. Neuroscience Research, 46, 23-31.
[17] Lepecq, J. C., Giannopulu, I., & Baudonniere, P. M. (1995). Cognitive Effects on Visually Induced Body Motion in Children. Perception, 24, 435-449.
[18] Lestienne, F., Soechting, J., & Berthoz, A. (1977). Postural Readjustments Induced by Linear Motion of Visual Scenes. Experimental Brain Research, 28, 363-384.
[19] Morofushi, M., Shinohara, K., & Kimura, F. (2001). Menstrual and Circadian Variations in Time Perception in Healthy Women and Women with Premenstrual Syndrome. Neuroscience Research, 41, 339-344.
[20] Mueller, C., Kornilova, L., Wiest, G., & Steinhoff, N. (1994). Psychophysical Studies of Visuo-Vestibular Interaction in Microgravity. Actaastronautica, 33, 9-13.
[21] Nakajima, T., Uchiyama, M., Enomoto, T., Shibui, K., Ishibashi, K., Kanno, O., & Okawa, M. (1998). Human Time Production under Constant Routine. Psychiatry and Clinical Neurosciences, 52, 240-241.
[22] Nakamura, S., & Shimojo, S. (1998). Stimulus Size and Eccentricity in Visually Induced Perception of Horizontally Translational Self-Motion. Perceptual and Motor Skills, 87, 659-663.
[23] Nishimura, T., Seno, T., Motoi, M., & Watanuki, S. (2014). Illusory Self-Motion (Vection) May Be Inhibited by Hypobaric Hypoxia. Aviation, Space, and Environmental Medicine, 85, 504-508.
[24] Ogawa, M., & Seno, T. (2014). Vection Is Modulated by the Semantic Meaning of Stimuli and Experimental Instructions. Perception, 63, 605-615.
[25] Ogawa, M., Matsumori, K., Seno, T., & Higuchi, S. (submitted). The Deprivation of Sleep Might Enhance Vection.
[26] Palmisano, S., & Chan, A. Y. C. (2004). Jitter and Size Effects on Vection Are Robust to Experimental Instructions and Demands. Perception, 33, 987-1000.
[27] Palmisano, S., Apthorp, D., Seno, T., & Stapley, P. (2014). Spontaneous Postural Sway Predicts the Strength of Smooth Vection. Experimental Brain Research, 232, 1185-1191.
[28] Poppel, E., & Giedke, H. (1970). Diurnal Variation of Time Perception. Psychologische Forschung, 34, 182-198.
[29] Riecke, B. E., Feuereissen, D., Rieser, J. J., & McNamara, T. P. (2011). Spatialized Sound Enhances Biomechanically-Induced Self-Motion Illusion (Vection). Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vancouver, 7-12 May 2011, 2799-2802.
[30] Sasaki, K., Seno, T., Yamada, Y., & Miura, K. (2012). Emotional Sounds Influence Vertical Vection. Perception, 41, 875-877.
[31] Seno, T. (2013a). Social Inhibition of Vection. Psychology, 4, 619-621.
[32] Seno, T. (2013b). Music Enhances Vection. Psychology, 7, 566-568.
[33] Seno, T. (2014). Vection Is Not Determined by the Retinal Coordinate. Psychology, 5, 12-14.
[34] Seno, T., & Fukuda, H. (2012). Stimulus Meanings Alter Illusory Self-Motion (Vection)—Experimental examination of the train illusion. Seeing & Perceiving, 25, 631-645.
[35] Seno, T., Abe, K., & Kiyokawa, S. (2013). Wearing Heavy Iron Clogs Can Inhibit Vection. Multisensory Rresearch, 26, 569-580.
[36] Seno, T., & Nakamura, S. (2013). Alcohol Consumption Enhances Vection. Perception, 42, 580-582.
[37] Seno, T., Ito, H., & Sunaga, S. (2009). The Object and Background Hypothesis for Vection. Vision Research, 49, 2973-2982.
[38] Seno, T., Ito, H., & Sunaga, S. (2010). Vection Aftereffects from Expanding/Contracting Stimuli. Seeing & Perceiving, 23, 273-294.
[39] Shirai, N., Seno, T., & Morohashi, S. (2013). More Rapid and Stronger Vection Can Occur in Elementary School Children than in Adults. Perception, 41, 1399-1402.
[40] Shirai, N., Imura, T., Tamura, R., & Seno, T. (2014). Stronger Vection in Junior High School Children than in Adults. Frontiers in Psychology, 5, Article 563.
[41] Schmeider, E., Leweke, F. M., Stermemann, U., Weber, M. M., & Emrich, H. M. (1996). Visual 3D Illusion: A Systems-Theoretical Approach to Psychosis. European Archives of Psychiatry and Clinical Neuroscience, 246, 256-260.
[42] Young, L. R., & Shelhamer, M. (1990). Microgravity Enhances the Relative Contribution of Visually-Induced Motion Sensation. Aviation, Space, and Environmental Medicine, 61, 525-530.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.