[1]
|
Allison, R. S., Zacher, J. E., Kirollos, R., Guterman, P. S., & Palmisano. S. (2012). Perception of Smooth and Perturbed Vection in Short-Duration Microgravity. Experimental Brain Research, 223, 479-487. http://dx.doi.org/10.1007/s00221-012-3275-5
|
[2]
|
Araujo, D. F., Soares, C. S., & de Almondes, K. M. (2013). Relation between Sleep and Visuospatial Skills in Students from a Public School. Estudos de Psicologia, 18, 109-116. http://dx.doi.org/10.1590/S1413-294X2013000100018
|
[3]
|
Aschoff, J. (1984). Circadian Timing. Annals of the New York Academy of Sciences, 423, 442-468. http://dx.doi.org/10.1111/j.1749-6632.1984.tb23452.x
|
[4]
|
Aschoff, J. (1998). Human Perception of Short and Long Time Intervals: Its Correlation with Body Temperature and the Duration of Wake Time. Journal of Biological Rhythms, 13, 437-442. http://dx.doi.org/10.1177/074873098129000264
|
[5]
|
Aschoff, J., & Daan, S. (2009). Human Time Perception in Temporal Isolation: Effects of Illumination Intensity. Chronobiology International, 14, 585-596. http://dx.doi.org/10.3109/07420529709001449
|
[6]
|
Bonnet, M. (2002). Sleep Deprivation. In M. H. Kryger, T. Roth, & W. C. Dement (Eds.), Principles and Practice of Sleep Medicine (pp. 53-71). Philadelphia, PA: W.B. Saunders Company.
|
[7]
|
Bougard, C., Lepelley, M. C., & Davenne, D. (2011). The Influences of Time-of-Day and Sleep Deprivation on Postural Control. Experimental Brain Research, 209, 109-115. http://dx.doi.org/10.1007/s00221-010-2524-8
|
[8]
|
Brandt, T., Dichgans, J., & Koenig, E. (1973). Differential Effects of Central versus Peripheral Vision on Egocentric and Exocentric Motion Perception. Experimental Brain Research, 16, 476-491. http://dx.doi.org/10.1007/BF00234474
|
[9]
|
Chee, M. W. L., & Chuah, Y. M. L. (2007). Functional Neuroimaging and Behavioral Correlates of Capacity Decline in Visual Short-Term Memory after Sleep Deprivation. Proceedings of the National Academy of Sciences of the United States of America, 104, 9487-9492. http://dx.doi.org/10.1073/pnas.0610712104
|
[10]
|
Daan, S., Beersma, D., & Borbely, A. (1984). Timing of Human Sleep: Recovery Process Gated by a Circadian Pacemaker. American Journal of Physics, 246, 161-178.
|
[11]
|
Dichgans, J., & Brandt, T. (1978). Visual-Vestibular Interaction: Effect on Self-Motion Perception and Postural Control. In R. Held, H. W. Leibowitz, & H. L. Tueber (Eds.), Handbook of Sensory Physiology (pp. 755-804). Berlin: Springer-Verlag.
|
[12]
|
Fischer, M. H., & Kornmüller, A. E. (1930). Optokinetischausgeloste Bewegungswahrnehmung und Optokinetischer Nystagmus. Journal fürPsychologie und Neurologie (Leipzig), 41, 273-308.
|
[13]
|
Haibach, P., Slobounov, S., & Newell, K. (2009). Egomotion and Vection in Young and Elderly Adults. Gerontology, 55, 637-643. http://dx.doi.org/10.1159/000235816
|
[14]
|
Held, R., Dichgans, J., & Bauer, J. (1975). Characteristics of Moving Visual Scenes Influencing Spatial Orientation. Vision Research, 15, 357-365. http://dx.doi.org/10.1016/0042-6989(75)90083-8
|
[15]
|
Howard, I. P. (1982). Human Visual Orientation. Chichester: Wiley.
|
[16]
|
Kuriyama, K., Uchiyama, M., Suzuki, H., Tagaya, H., Ozaki, A., Aritake, S., Kameid, Y., Nishikawa, T., & Takahashi, K. (2003). Circadian Fluctuation of Time Perception in Healthy Human Subjects. Neuroscience Research, 46, 23-31. http://dx.doi.org/10.1016/S0168-0102(03)00025-7
|
[17]
|
Lepecq, J. C., Giannopulu, I., & Baudonniere, P. M. (1995). Cognitive Effects on Visually Induced Body Motion in Children. Perception, 24, 435-449. http://dx.doi.org/10.1068/p240435
|
[18]
|
Lestienne, F., Soechting, J., & Berthoz, A. (1977). Postural Readjustments Induced by Linear Motion of Visual Scenes. Experimental Brain Research, 28, 363-384.
|
[19]
|
Morofushi, M., Shinohara, K., & Kimura, F. (2001). Menstrual and Circadian Variations in Time Perception in Healthy Women and Women with Premenstrual Syndrome. Neuroscience Research, 41, 339-344. http://dx.doi.org/10.1016/S0168-0102(01)00290-5
|
[20]
|
Mueller, C., Kornilova, L., Wiest, G., & Steinhoff, N. (1994). Psychophysical Studies of Visuo-Vestibular Interaction in Microgravity. Actaastronautica, 33, 9-13. http://dx.doi.org/10.1016/0094-5765(94)90102-3
|
[21]
|
Nakajima, T., Uchiyama, M., Enomoto, T., Shibui, K., Ishibashi, K., Kanno, O., & Okawa, M. (1998). Human Time Production under Constant Routine. Psychiatry and Clinical Neurosciences, 52, 240-241. http://dx.doi.org/10.1111/j.1440-1819.1998.tb01052.x
|
[22]
|
Nakamura, S., & Shimojo, S. (1998). Stimulus Size and Eccentricity in Visually Induced Perception of Horizontally Translational Self-Motion. Perceptual and Motor Skills, 87, 659-663. http://dx.doi.org/10.2466/pms.1998.87.2.659
|
[23]
|
Nishimura, T., Seno, T., Motoi, M., & Watanuki, S. (2014). Illusory Self-Motion (Vection) May Be Inhibited by Hypobaric Hypoxia. Aviation, Space, and Environmental Medicine, 85, 504-508. http://dx.doi.org/10.3357/ASEM.3812.2014
|
[24]
|
Ogawa, M., & Seno, T. (2014). Vection Is Modulated by the Semantic Meaning of Stimuli and Experimental Instructions. Perception, 63, 605-615. http://dx.doi.org/10.1068/p7639
|
[25]
|
Ogawa, M., Matsumori, K., Seno, T., & Higuchi, S. (submitted). The Deprivation of Sleep Might Enhance Vection.
|
[26]
|
Palmisano, S., & Chan, A. Y. C. (2004). Jitter and Size Effects on Vection Are Robust to Experimental Instructions and Demands. Perception, 33, 987-1000. http://dx.doi.org/10.1068/p5242
|
[27]
|
Palmisano, S., Apthorp, D., Seno, T., & Stapley, P. (2014). Spontaneous Postural Sway Predicts the Strength of Smooth Vection. Experimental Brain Research, 232, 1185-1191. http://dx.doi.org/10.1007/s00221-014-3835-y
|
[28]
|
Poppel, E., & Giedke, H. (1970). Diurnal Variation of Time Perception. Psychologische Forschung, 34, 182-198. http://dx.doi.org/10.1007/BF00424544
|
[29]
|
Riecke, B. E., Feuereissen, D., Rieser, J. J., & McNamara, T. P. (2011). Spatialized Sound Enhances Biomechanically-Induced Self-Motion Illusion (Vection). Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vancouver, 7-12 May 2011, 2799-2802.
|
[30]
|
Sasaki, K., Seno, T., Yamada, Y., & Miura, K. (2012). Emotional Sounds Influence Vertical Vection. Perception, 41, 875-877. http://dx.doi.org/10.1068/p7215
|
[31]
|
Seno, T. (2013a). Social Inhibition of Vection. Psychology, 4, 619-621. http://dx.doi.org/10.4236/psych.2013.48088
|
[32]
|
Seno, T. (2013b). Music Enhances Vection. Psychology, 7, 566-568. http://dx.doi.org/10.4236/psych.2013.47081
|
[33]
|
Seno, T. (2014). Vection Is Not Determined by the Retinal Coordinate. Psychology, 5, 12-14. http://dx.doi.org/10.4236/psych.2014.51003
|
[34]
|
Seno, T., & Fukuda, H. (2012). Stimulus Meanings Alter Illusory Self-Motion (Vection)—Experimental examination of the train illusion. Seeing & Perceiving, 25, 631-645. http://dx.doi.org/10.1163/18784763-00002394
|
[35]
|
Seno, T., Abe, K., & Kiyokawa, S. (2013). Wearing Heavy Iron Clogs Can Inhibit Vection. Multisensory Rresearch, 26, 569-580. http://dx.doi.org/10.1163/22134808-00002433
|
[36]
|
Seno, T., & Nakamura, S. (2013). Alcohol Consumption Enhances Vection. Perception, 42, 580-582. http://dx.doi.org/10.1068/p7473
|
[37]
|
Seno, T., Ito, H., & Sunaga, S. (2009). The Object and Background Hypothesis for Vection. Vision Research, 49, 2973-2982. http://dx.doi.org/10.1016/j.visres.2009.09.017
|
[38]
|
Seno, T., Ito, H., & Sunaga, S. (2010). Vection Aftereffects from Expanding/Contracting Stimuli. Seeing & Perceiving, 23, 273-294. http://dx.doi.org/10.1163/187847510X532667
|
[39]
|
Shirai, N., Seno, T., & Morohashi, S. (2013). More Rapid and Stronger Vection Can Occur in Elementary School Children than in Adults. Perception, 41, 1399-1402. http://dx.doi.org/10.1068/p7251
|
[40]
|
Shirai, N., Imura, T., Tamura, R., & Seno, T. (2014). Stronger Vection in Junior High School Children than in Adults. Frontiers in Psychology, 5, Article 563. http://dx.doi.org/10.3389/fpsyg.2014.00563
|
[41]
|
Schmeider, E., Leweke, F. M., Stermemann, U., Weber, M. M., & Emrich, H. M. (1996). Visual 3D Illusion: A Systems-Theoretical Approach to Psychosis. European Archives of Psychiatry and Clinical Neuroscience, 246, 256-260. http://dx.doi.org/10.1007/BF02190277
|
[42]
|
Young, L. R., & Shelhamer, M. (1990). Microgravity Enhances the Relative Contribution of Visually-Induced Motion Sensation. Aviation, Space, and Environmental Medicine, 61, 525-530.
|