Planar Dual-Band Electrically Small Antenna Based on Double-Negative Metamaterials

DOI: 10.4236/jcc.2015.33005   PDF   HTML   XML   3,744 Downloads   4,461 Views   Citations

Abstract

A coaxially fed dual-band electrically small antenna based on double-negative metamaterials is presented in this letter. The antenna consists of a microstrip patch antenna as driven element and a double-negative metamaterials shell as parasitic element. Nearly complete matching of the entire system to a 50 Ω source without any matching network is achieved at 299 MHz and 837 MHz, with ka = 0.444 and 1.242 respectively. Measured performance agrees with simulations, and the proposed antenna has considerable radiation efficiency and is suitably employed for VHF and UHF applications.

Share and Cite:

Zhou, C. , Wang, G. and Xiao, Y. (2015) Planar Dual-Band Electrically Small Antenna Based on Double-Negative Metamaterials. Journal of Computer and Communications, 3, 27-34. doi: 10.4236/jcc.2015.33005.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Chu, L.J. (1948) Physical Limitations of Omnidirectional Antennas. J. Appl. Phys, 19, 1163-1175. http://dx.doi.org/10.1063/1.1715038
[2] Wheeler, H.A. (1947) Fundamental Limitations of Small Antennas. IRE Proc., 35, 1479-1484.
[3] Wheeler, H.A. (1959) The Radiansphere Around a Small Antenna. IRE Proc., 47, 1325-1331.
[4] Wheeler, H.A. (1975) Small Antennas. IEEE. Trans. Antennas Propag, AP-23.
[5] Best, S.R. (2005) Low Q Electrically Small Linear and Elliptical Polarized Spherical Dipole Antennas. IEEE. Trans. Antennas Propag., 53, 1047-1053. http://dx.doi.org/10.1109/TAP.2004.842600
[6] Ziolkowski, R.W., Jin, P. and Lin, C.-C. (2011) Metamaterial-Inspired Engineering of Antennas. Proc. IEEE, 99, 1720-1731. http://dx.doi.org/10.1109/JPROC.2010.2091610
[7] Erentok, A. and Ziolkowski, R.W. (2007) An Efficient Metamaterial-inspired Electrically-Small Antenna. Microw. Opt. Tech. Lett., 49, 1287-1290.
[8] Erentok, A. and Ziolkowski, R.W. (2007) Two-Dimensional Efficient Metamaterial-Inspired Electrically-Small Antenna. Microw. Opt. Tech. Lett., 49, 1669-1673.
[9] Erentok, A. and Ziolkowski, R.W. (2008) Metamaterial-Inspired Efficient Electrically Small Antennas. IEEE. Trans. Antennas Propag., 56, 691-707. http://dx.doi.org/10.1109/TAP.2008.916949
[10] Ziolkowski, R.W. (2008) Efficient Electrically Small Antenna Facilitated by a Near-Field Resonant Parasitic. IEEE Antennas Wireless Propag. Lett., 7, 580-583. http://dx.doi.org/10.1109/LAWP.2008.2000558
[11] Ziolkowski, R.W. (2008) An Efficient, Electrically Small Antenna Designed for VHF and UHF Applications. IEEE Antennas Wireless Propag. Lett., 7, 217-220. http://dx.doi.org/10.1109/LAWP.2008.921635
[12] Ziolkowski, R.W., Lin, C.-C., Nielsen, J.A., Tanielian, M.H. and Holloway, C.L. (2009) Design and Experimental Verification of a 3D Magnetic EZ Antenna at 300 MHz. IEEE Antennas Wireless Propag. Lett., 8, 989-993. http://dx.doi.org/10.1109/LAWP.2009.2029708
[13] Ziolkowski, R.W., Jin, P., Nielsen, J.A., Tanielian, M.H. and Holloway, C.L. (2009) Experimental Verification of Z Antennas at UHF Frequencies. IEEE Antennas Wireless Propag. Lett., 8, 1329-1333. http://dx.doi.org/10.1109/LAWP.2009.2038180
[14] Jin, P. and Ziolkowski, R.W. (2009) Low Q, Electrically Small, Efficient Near-Field esonant Parasitic Antennas. IEEE. Trans. Antennas Propag., 57, 2548-2563. http://dx.doi.org/10.1109/TAP.2009.2027162
[15] Jin, P. and Ziolkowski, R.W. (2010) Broadband, Efficient, Electrically Small Metamaterial-Inspired Antennas Facilitated by Active Near-Field Resonant Parasitic Elements. IEEE. Trans. Antennas Propag., 58, 318-327. http://dx.doi.org/10.1109/TAP.2009.2037708
[16] Lin, C.-C., Ziolkowski, R.W., Nielsen, J.A., Tanielian, M.H. and Holloway, C.L. (2010) An Efficient, Low Profile, Electrically Small, Three-Dimensional, Very High Frequency Magnetic EZ Antenna. Appl. Phys. Lett., 96, Article ID: 104102. http://dx.doi.org/10.1063/1.3357430
[17] Lin, C.-C., Jin, P., Ziolkowski, R.W. (2011) Multi-Functional, Magnetically-Coupled, Electrically Small, Near-Field Resonant Parasitic Wire Antennas. IEEE. Trans. Antennas Propag., 59, 691-707.
[18] Jin, P. and Ziolkowski, R.W. (2011) Multi-Frequency, Linear and Circular Polarized, Metamaterial-Inspired, Near- Field Resonant Parasitic Antennas. IEEE. Trans. Antennas Propag., 59, 1446-1459.
[19] Tang, M.-C. and Ziolkowski, R.W. (2013) Efficient, High Directivity, Large Front-to-Back-Ratio, Electrically Small, Near-Field-Resonant-Parasitic Antenna. IEEE Access, 1, 16-28. http://dx.doi.org/10.1109/ACCESS.2013.2259134
[20] Zhu, N. and Ziolkowski, R.W. (2012) Broad-Bandwidth, Electrically Small Antenna Augmented With an Internal Non-Foster Element. IEEE Antennas Wireless Propag. Lett., 11, 1116-1120. http://dx.doi.org/10.1109/LAWP.2012.2219572
[21] Jin, P., Lin, C.-C. and Ziolkowski, R.W. (2012) Multifunctional, Electrically Small, Planar Near-Field Resonant Parasitic Antennas. IEEE Antennas Wireless Propag. Lett., 11, 200-204. http://dx.doi.org/10.1109/LAWP.2012.2187322
[22] Jin, P. and Ziolkowski, R.W. (2012) High-Directivity, Electrically Small, Low-Profile Near-Field Resonant Parasitic Antennas. IEEE Antennas Wireless Propag. Lett., 11, 305-309. http://dx.doi.org/10.1109/LAWP.2012.2190030
[23] Tang, M.-C., Zhu, N. and Ziolkowski, R.W. (2013) Augmenting a Modified Egyptian Axe Dipole Antenna With Non-Foster Elements to Enlarge Its Directivity Bandwidth. IEEE Antennas Wireless Propag. Lett., 12, 421-424. http://dx.doi.org/10.1109/LAWP.2013.2254103
[24] Zhu, N. and Ziolkowski, R.W. (2012) Design and Measurements of an Electrically Small, Broad Bandwidth, Non-Foster Circuit-Augmented Protractor Antenna. Appl. Phys. Lett., 101, Article ID: 024107. http://dx.doi.org/10.1063/1.4736996

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.