Potential Regulators of Sporadic ALS Development and Alternative Therapeutic Options

DOI: 10.4236/nm.2015.61002   PDF   HTML   XML   2,402 Downloads   3,453 Views   Citations


Amyotrophic Lateral Sclerosis (ALS) is the most common neurodegenerative disorder. It is also among the most lethal as life expectancy is between 2 and 5 years after diagnosis. Sporadic ALS (sALS) makes up 90% of all ALS cases with little known about the exact mechanism of pathogenesis. Many potential regulators of sALS development have been proposed, several of which are examined in this review with supporting evidence. Interplay among these factors is examined more closely in hopes of shedding more light on sALS pathophysiology. There is a paucity of effective treatment options as the only FDA-approved drug for use, riluzole, has a positive but modest benefit in improving survival. Other treatments available merely target ameliorating symptoms of ALS. Alternative treatment options are also discussed. This study ultimately aims to make relevant connections among factors implicated in sALS development and to highlight alternative forms of treatment in improving neuron function and status, albeit controversial.

Share and Cite:

Manning, M. and Kelly-Worden, M. (2015) Potential Regulators of Sporadic ALS Development and Alternative Therapeutic Options. Neuroscience and Medicine, 6, 5-12. doi: 10.4236/nm.2015.61002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Anand, A. Thakur, K. and Gupta, P.K. (2013) ALS and Oxidative Stress: The Neurovascular Scenario. Oxidative Medicine and Cellular Longevity, 2013, 1-14.
[2] Brooks, B.R., Sanjak, M., Belden, D., Juhasz-Poscine, K. and Waclawik, A. (2000) In: Brown Jr., R.H., Meininger, V. and Swash, M., Eds, Amyotrophic Lateral Sclerosis, Dunitz, London, 31-58.
[3] Mehta, P., Antao, V., Kaye, W., Sanchez, M., Williamson, D., Bryan, L., Muravov, O. and Horton, K. (2014) Prevalence of Amyotrophic Lateral Sclerosis-United States, 2010-2011. MMWR. Surveillance Summaries, 63, 1-14.
[4] Wills, A., Hubbard, J., Macklin, E., Glass, J.,Tandan, R., Simpson, E., Brooks, B., Gelinas, D., Mitsumoto, H., Mozaffar, T., Hanes, G., Ladha, S., Heiman-Patterson, T., Katz, J., Lou, J.-S., Mahoney, K., Grasso, D., Lawson, R., Yu, H. and Cudkowicz, M. (2014) Hypercaloric Enteral Nutrition in Patients with Amyotrophic Lateral Sclerosis: A Randomised, Double-Blind, Placebo-Controlled Phase 2 Trial. The Lancet, 383, 2065-2072.
[5] Yin, H.Z., Nalbandian, A., Hsu, C.-I., Li, S., Llewellyn, K.J., Mozaffar, T., Kimonis, V.E. and Weiss, J.H. (2012) Slow Development of ALS-Like Spinal Cord Pathology in Mutant Valosin-Containing Protein Gene Knock-In Mice. Cell Death and Disease, 3, 1-12.
[6] Purves, D. (2012) Neuroscience. 5th Edition, Sinauer Associates, Inc., Sunderland.
[7] Rothstein, J. (2009) Current Hypothesis for the Underlying Biology of Amyotrophic Lateral Sclerosis. Annals of Neurology, 65, S3-S9.
[8] Mitsumoto, H., Santella, R., Liu, X., Bogdanov, M., Zipprich, J., Wu, H.-C., Mahata, J., Kilty, M., Bednarz, K., Bell, D., Gordon, P.H., Hornig, M., Mehrazin, M., Naini, A., Beal, M.F. and Factor-Litvak, P. (2008) Oxidative Stress Biomarkers in Sporadic ALS. Amyotrophic Lateral Sclerosis, 9, 177-183.
[9] Torbick, N., Hession, S., Stommel, E. and Caller, T. (2014) Mapping Amyotrophic Lateral Sclerosis Lake Risk Factors across Northern New England. International Journal of Health Geographics, 13, 1.
[10] Clark, J., Pritchard, C. and Sunak, S. (2005) Amyotrophic Lateral Sclerosis: A Report on the State of Research into the Cause, Cure, and Prevention of ALS. ALS Therapy Development Foundation, 1-15.
[11] Murata, T., Ohtsuka, C. and Terayama, Y. (2008) Increased Mitochondrial Oxidative Damage and Oxidative Damage DNA Damage Contributes to the Neurodegenerative Process in Sporadic Amyotrophic Lateral Sclerosis. Free Radical Research, 42, 221-225.
[12] Robberecht, W. and Philips, T. (2013) The Changing Scene of Amyotrophic Lateral Sclerosis. Nature Reviews Neuroscience, 14, 248-264.
[13] Rodríguez-Hernández, á., Cordero, M.D., Salviati, L., Artuch, R., Pineda, M., Briones, P., Sánchez-Alcázar, J.A., et al. (2009) Coenzyme Q Deficiency Triggers Mitochondria Degradation by Mitophagy. Autophagy, 5, 19-32.
[14] Rothstein, J. (1996) Excitotoxicity Hypothesis. Neurology, 47, 19S-26S.
[15] Choi, D.W. and Rothman, S.M. (1990) The Role of Glutamate Neurotoxicity in Hypoxic-Ischemic Neuronal Death. Annual Review of Neuroscience, 13, 171-182.
[16] Keelan, J., Vergun, O. and Duchen, M.R. (1999) Excitotoxic Mitochondrial Depolarisation Requires Both Calcium and Nitric Oxide in Rat Hippocampal Neurons. The Journal of Physiology, 520, 797-813.
[17] Spreux-Varoquaux, O., Bensimon, G., Lacomblez, L., Salachas, F., Pradat, P.F., Le Forestier, N., Marouan, A., Dib, M. and Meininger, V. (2002) Glutamate Levels in Cerebrospinal Fluid in Amyotrophic Lateral Sclerosis: A Reappraisal Using a New HPLC Method with Coulometric Detection in a Large Cohort of Patients. Journal of the Neurological Sciences, 193, 73-78.
[18] Gordon, P.H. (2013) Amyotrophic Lateral Sclerosis: An Update for 2013 Clinical Features, Pathophysiology, Management and Therapeutic Trials. Aging and Disease, 4, 295-310.
[19] Aizawa, H., Sawada, J., Hideyama, T., Yamashita, T., Katayama, T., Hasebe, N., Kimura, T., Yahara, O. and Kwak, S. (2010) TDP-43 Pathology in Sporadic ALS Occurs in Motor Neurons Lacking the RNA Editing Enzyme ADAR2. Acta Neuropathologica, 120, 75-84.
[20] Musaro, A. (2013) Understanding ALS: New Therapeutic Approaches. FEBS Journal, 280, 4315-4322.
[21] Wegorzewska, I., Bell, S., Cairns, N.J., Miller, T.M. and Baloh, R.H. (2009) TDP-43 Mutant Transgenic Mice Develop Features of ALS and Frontotemporal Lobar Degeneration. Proceedings of the National Academy of Sciences of the United States of America, 106, 18809-18814.
[22] Yamashita, T., Chai, H.L., Teramoto, S., Tsuji, S., Kuniko, S., Muramatsu, S.I. and Kwak, S. (2013) Rescue of Amyotrophic Lateral Sclerosis Phenotype in a Mouse Model by Intravenous AAV9-ADAR2 Delivery to Motor Neurons. EMBO Molecular Medicine, 5, 1710-1719.
[23] Kabashi, E., Valdmanis, P.N., Dion, P., Spiegelman, D., McConkey, B.J., Velde, C.V., Bouchard, J.P., Lacomblez, L., Pochigaeva, K., Salachas, F., Pradat, P.F., Camu, W., Meininger, V., Dupre, N. and Rouleau, G.A. (2008) TARDBP Mutations in Individuals with Sporadic and Familial Amyotrophic Lateral Sclerosis. Nature Genetics, 40, 572-574.
[24] Das, K., Nag, C. and Ghosh, M. (2012) Familial, Environmental, and Occupational Risk Factors in Development of Amyotrophic Lateral Sclerosis. North American Journal of Medical Sciences, 4, 350-355.
[25] Bradley, W.G. and Mash, D.C. (2009) Beyond Guam: The Cyanobacteria/BMAA Hypothesis of the Cause of ALS and Other Neurodegenerative Diseases. Amyotrophic Lateral Sclerosis, 10, 7-20.
[26] Bradley, W.G., Borenstein, A.R., Nelson, L.M., Codd, G.A., Rosen, B.H., Stommel, E.W. and Cox, P.A. (2013) Is Exposure to Cyanobacteria an Environmental Risk Factor for Amyotrophic Lateral Sclerosis and Other Neurodegenerative Diseases? Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 14, 325-333.
[27] Morgan, R.H. and Srivastava, A.K. (2014) Clinical Relevance of Stem Cell Therapies in Amyotrophic Lateral Sclerosis. Neurology India, 62, 239-248. http://dx.doi.org/10.4103/0028-3886.136895
[28] Lamanauskas, N. and Nistri, A. (2008) Riluzole Blocks Persistent Na+ and Ca2+ Currents and Modulates Release of Glutamate via Presynaptic NMDA Receptors on Neonatal Rat Hypoglossal Motorneurons in Vitro. European Journal of Neuroscience, 27, 2501-2514.
[29] Garbuzova-Davis, S., Sanberg, C.D., KuzminNichols, N., Willing, A.E., Gemma, C., Bickford, P.C., Miller, C., Rossi, R. and Sanberg, P.R. (2008) Human Umbilical Cord Blood Treatment in a Mouse Model of ALS: Optimization of Cell Dose. PLoS ONE, 3, e2494.
[30] Corti, S., Nizzardo, M., Nardini, M., Donadoni, C., Salani, S., Simone, C., Falcone, M., Riboldi, G., Govoni, A., Bresolin, N. and Comi, G.P. (2010) Systemic Transplantation of c-kit+ Cells Exerts a Therapeutic Effect in a Model of Amyotrophic Lateral Sclerosis. Human Molecular Genetics, 19, 3782-3796.
[31] Lepore, A.C., Rauck, B., Dejea, C., Pardo, A.C., Rao, M.S., Rothstein, J.D. and Maragakis, N.J. (2008) Focal Transplantation-Based Astrocyte Replacement Is Neuroprotective in a Model of Motor Neuron Disease. Nature Neuroscience, 11, 1294-1301.
[32] Ohnishi, S., Ito, H., Suzuki, Y., Adachi, Y., Wate, R., Zhang, J., Nakano, S., Kusaka, H. and Ikehara, S. (2009) Intra-Bone Marrow-Bone Marrow Transplantation Slows Disease Progression and Prolongs Survival in G93A Mutant SOD1 Transgenic Mice, an Animal Model Mouse for Amyotrophic Lateral Sclerosis. Brain Research, 1296, 216-224.
[33] Lau, A. and Tymianski, M. (2010) Glutamate Receptors, Neurotoxicity and Neurodegeneration. European Journal of Physiology, 460, 525-542.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.