Epidemiological Characteristics, Resistance Patterns and Spread of Gram-Negative Bacteria Related to Colonization of Patients in Intensive Care Units


Our aim was to determine the epidemiological characteristics, the resistance patterns and the spread of Gram negative bacteria related to colonization of patients in adult Intensive Care Units. Methods: A prospective cohort of patients colonized and/or infected with Gram negative bacteria was conducted at two adult ICUs from hospitals in Brazil (April 2012 to February 2013). Nasal, groin and perineum swabs were performed. Samples were incubated on MacConkey and cetrimide agar (48 h at 37) and identification tests (Vitek-BioMérieux), antibiogram (Bauer-Kirby method), Carba NP test, Polymerase Chain Reaction (PCR) and sequencing were performed. The patterns of resistant microorganisms were compared by rep-PCR (Diversilab). Results: There were 53 cases of colonization. In these cases, we identified imipenem-resistant Acinetobacter baumannii (51%), Pseudomonas aeruginosa (32%), Klebsiella pneumoniae ESBL (38%) or imipenem resistant (5.6%). The use of antimicrobials and medical devices were related to colonization (p < 0.05). The resistance patterns expressed by Klebsiella pneumoniae were ESBL (CTX-M, SHV e TEM) and KPC2. A verified profile of Acinetobacter baumannii was related to OXA-23 and OXA-253 (OXA-143 variant). The profiles ESBL and KPC2 expressed by Klebsiella pneumoniae were distributed between the both ICUs. The distribution of OXA-23 and OXA-253 was verified only in one ICU. The similarity of strains ranged from 80% to 95%, highlighting the horizontal transference of these microorganisms.

Share and Cite:

Damaceno, Q. , Nicoli, J. and Oliveira, A. (2015) Epidemiological Characteristics, Resistance Patterns and Spread of Gram-Negative Bacteria Related to Colonization of Patients in Intensive Care Units. Advances in Infectious Diseases, 5, 14-20. doi: 10.4236/aid.2015.51002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Livermore, D. (2012) Current Epidemiology and Growing Resistance of Gram-Negative Pathogens. Korean Journal of Internal Medicine, 27, 128-142. http://dx.doi.org/10.3904/kjim.2012.27.2.128
[2] Lowe, F.C., Mcgeer, A., Muller, M.P. and Katz, K. (2012) For the Toronto ESBL Working Group. Decreased Susceptibility to Noncarbapenem Antimicrobials in Extended-Spectrum-β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Isolates in Toronto, Canada. Antimicrobial Agents and Chemotherapy, 56, 3977-3980. http://dx.doi.org/10.1128/AAC.00260-12
[3] Yigit, H., Queenan, A.M., Anderson, G.J., Domenech-Sanchez, A., Biddle, J.W., Steward, C.D., et al. (2001) Novel Carbapenem-Hydrolyzing β-Lactamase KPC-1 from a Carbapenem-Resistant Strain of Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 45, 1151-1161. http://dx.doi.org/10.1128/AAC.45.4.1151-1161.2001
[4] Naas, T., Cuzon, G., Truong, H.V. and Nordmann, P. (2012) Role of ISKpn7 and Deletions in blaKPC Gene Expression. Antimicrobial Agents and Chemotherapy, 56, 4753-4759.
[5] Poirel, L., Naas, T. and Nordmann, P. (2010) Diversity, Epidemiology, and Genetics of Class D β-Lactamases. Antimicrobial Agents and Chemotherapy, 54, 24-38. http://dx.doi.org/10.1128/AAC.01512-08
[6] Sader, H.S., Jones, R.N., Gales, A.C., Silva, J.B. and Pignatari, A.C., Participantes do grupo Sentry (América Latina) (2004) SENTRY Antimicrobial Surveillance Program Report: Latinamerican and Brazilian Results for 1997 through 2001. Brazilian Journal of Infectious Diseases, 8, 25-79. http://dx.doi.org/10.1590/S1413-86702004000100004
[7] Rice, L.B. (2008) Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. Journal of Infectious Diseases, 197, 1079-1081. http://dx.doi.org/10.1086/533452
[8] Clinical and Laboratory Standards Institute (CLSI) (2011) Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard-Tenth Edition. CLSI Document M02-A10. Clinical and Laboratory Standards Institute, Wayne.
[9] Nordmann, P., Poirel, L. and Dortet, L. (2012) Rapid Detection of Carbapenemase Producing Enterobacteriaceae, Emerging Infectious Diseases, 8,1503-1507.
[10] Odeh, R., Kelkar, S., Hujer, A.M., Bonomo, R.A., Schreckenberger, P.C. and Quinn, J.P. (2002) Broad Resistance Due to Plasmid-Mediated AmpC b-Lactamases in Clinical Isolates of Escherichia coli. Clinical Infectious Diseases, 35, 140-145. http://dx.doi.org/10.1086/340742
[11] Girlich, D., Damaceno, Q.S., Oliveira, A.C. and Nordmann, P. (2014) OXA-253, a Variant of the Carbapenem-Hydrolyzing Class D β-Lactamase OXA-143 in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 58, 2976-2978. http://dx.doi.org/10.1128/AAC.02640-13
[12] Papadimitriou-Olivgeris, M., Marangos, M., Fligou, F., Christofidou, M., Bartzavali, C., Anastassiou, E.D., et al. (2012) Risk Factors for KPC-Producing Klebsiella pneumoniae Enteric Colonization upon ICU Admission. Journal of Antimicrobial Chemotherapy, 67, 2976-2981. http://dx.doi.org/10.1093/jac/dks316
[13] Feldman, N., Adler, A., Molshatzki, N., Navon-Venezia, S., Khabra, E., Cohen, D. and Carmeli, Y. (2013) Gastrointestinal Colonization by KPC-Producing Klebsiella pneumoniae Following Hospital Discharge: Duration of Carriage and Risk Factors for Persistent Carriage. Clinical Microbiology and Infection, 19, E190-E196. http://dx.doi.org/10.1111/1469-0691.12099
[14] Towner, K.J. (2009) Acinetobacter: An Old Friend, but a New Enemy. Journal of Hospital Infection, 73, 355-363. http://dx.doi.org/10.1016/j.jhin.2009.03.032
[15] Kempf, M. and Rolain, J.M. (2012) Emergence of Resistance to Carbapenems in Acinetobacter baumannii in Europe: Clinical Impact and Therapeutic Options. International Journal of Antimicrobial Agents, 39, 105-114. http://dx.doi.org/10.1016/j.ijantimicag.2011.10.004
[16] Paterson, D.L. (2008) The Molecular Epidemiology of Extended-Spectrum Beta-Lactamase Producing Organisms. Enfermedades Infecciosas y Microbiología Clínica, 26, 403.
[17] Lartigue, M.F., Zinsius, C., Wenger, A., Bille, J., Poirel, L. and Nordmann, P. (2007) Extended-Spectrum β-Lactamases of the CTX-M Type Now in Switzerland. Antimicrobial Agents and Chemotherapy, 51, 2855-2860. http://dx.doi.org/10.1128/AAC.01614-06
[18] Ruppé, E., Pitsch, A., Tubach, F., Lastours, V., Chau, F., Pasquet, B., et al. (2012) Clinical Predictive Values of Extended-Spectrum Beta-Lactamase Carriage in Patients Admitted to Medical Wards. European Journal of Clinical Microbiology & Infectious Diseases, 31, 319-325. http://dx.doi.org/10.1007/s10096-011-1313-z
[19] Gionco, B., Pelayo, J.S., Venancio, E.J., Caio, R., Gales, A.C. and Carrara-Marroni, F.E. (2012) Detection of OXA-231, a New Variant of blaOXA-143, in Acinetobacter baumannii from Brazil: A Case Report. Journal of Antimicrobial Chemotherapy, 67, 2531-2532. http://dx.doi.org/10.1093/jac/dks223
[20] Zander, E., Bonnin, R.A., Seifert, H. and Higgins, P.G. (2014) Characterization of blaOXA-143 Variants in Acinetobacter baumannii and Acinetobacter pittii. Antimicrobial Agents and Chemotherapy, 58, 2704-2708. http://dx.doi.org/10.1128/AAC.02618-13
[21] Higgins, P.G., Poirel, L., Lehmann, M., Nordmann, P. and Seifert, H. (2009) OXA-143, a Novel Carbapenem-Hidrolyzing Class D β-Lactamase in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 53, 5035-5038. http://dx.doi.org/10.1128/AAC.00856-09
[22] Opazo, A., Domínguez, M., Bello, H., Amyes, S.G. and Rocha, G. (2012) OXA-Type Carbapenemases in Acinetobacter baumannii in South America. Journal of Infection in Developing Countries, 6, 311-316.
[23] Sostarich, A.M., Zolldann, D., Haefner, H., Luetticken, R., Schulze-Roebecke, R. and Lemmen, S.W. (2008) Impact of Multiresistance of Gram-Negative Bacteria in Bloodstream Infection on Mortality Rates and Length of Stay. Infection, 36, 31-35. http://dx.doi.org/10.1007/s15010-007-6316-4
[24] Willwmsen, I., Elberts, S., Verhulst, C., Rijnsburger, M., Filius, M., Savelkoul, P., et al. (2011) Highly Resistant Gram-Negative Microorganisms: Incidence Density and Occurrence of Nosocomial Transmission (TRIANGLE Study). Infection Control and Hospital Epidemiology, 32, 333-341. http://dx.doi.org/10.1086/658941
[25] Grice, E.A., Kong, H.H., Conlan, S., Deming, C.B., Davis, J., Young, A.C., et al. (2009) Topographical and Temporal Diversity of the Human Skin Microbiome. Science, 324, 1190-1192. http://dx.doi.org/10.1126/science.1171700
[26] Chen, Y.E. and Tsao, H. (2013) The Skin Microbiome: Current Perspectives and Future Challenges. Journal of the American Academy of Dermatology, 69, 143-155. http://dx.doi.org/10.1016/j.jaad.2013.01.016

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.