var refererrurl = document.referrer; // var downloadurl = window.location.href; // var args = "PaperID=" + 53927 + "&RefererUrl=" + refererrurl + "&DownloadUrl=" + downloadurl; // url = url + "?" + args + "&rand=" + RndNum(4); // // $(this).bind('click', function() { ShowTwo(url)}); // } // }); // } // //获取下载pdf注册的cookie // function getcookie() { // var cookieName = "pdfddcookie"; // var cookieValue = null; //返回cookie的value值 // if (document.cookie != null && document.cookie != '') { // var cookies = document.cookie.split(';'); //将获得的所有cookie切割成数组 // for (var i = 0; i < cookies.length; i++) { // var cookie = cookies[i]; //得到某下标的cookies数组 // if (cookie.substring(0, cookieName.length + 2).trim() == cookieName.trim() + "=") {//如果存在该cookie的话就将cookie的值拿出来 // cookieValue = cookie.substring(cookieName.length + 2, cookie.length); // break // } // } // } // if (cookieValue != "" && cookieValue != null) {//如果存在指定的cookie值 // return false; // } // else { // // return true; // } // } // function ShowTwo(webUrl){ // alert("22"); // $.funkyUI({url:webUrl,css:{width:"600",height:"500"}}); // } //window.onload = pdfdownloadjudge;
JILSA> Vol.7 No.1, February 2015
Share This Article:
Cite This Paper >>

Experimental Design and Its Posterior Efficiency for the Calibration of Wearable Sensors

Abstract Full-Text HTML XML Download Download as PDF (Size:852KB) PP. 11-20
DOI: 10.4236/jilsa.2015.71002    4,104 Downloads   4,700 Views   Citations
Author(s)    Leave a comment
Lin Ye, Steven W. Su


Centre for Health Technologies, Faculty of Engineering and IT, University of Technology, Sydney, Australia.


This paper investigates experimental design (DoE) for the calibration of the triaxial accelerometers embedded in a wearable micro Inertial Measurement Unit (μ-IMU). Firstly, a new linearization strategy is proposed for the accelerometer model associated with the so-called autocalibration scheme. Then, an effective Icosahedron design is developed, which can achieve both D-optimality and G-optimality for linearized accelerometer model in ideal experimental settings. However, due to various technical limitations, it is often infeasible for the users of wearable sensors to fully implement the proposed experimental scheme. To assess the efficiency of each individual experiment, an index is given in terms of desired experimental characteristic. The proposed experimental scheme has been applied for the autocalibration of a newly developed μ-IMU.


Wearable Health Monitoring, IMU, Triaxial Accelerometer, Autocalibration, DoE, Modelling, Linerization

Cite this paper

Ye, L. and Su, S. (2015) Experimental Design and Its Posterior Efficiency for the Calibration of Wearable Sensors. Journal of Intelligent Learning Systems and Applications, 7, 11-20. doi: 10.4236/jilsa.2015.71002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Yuwono, M., Moulton, B.D., Su, S.W., Celler, B.G. and Nguyen, H.T. (2002) Unsupervised Machine-Learning Method for Improving the Performance of Ambulatory Fall-Detection Systems. BioMedical Engineering OnLine, 11, 9.
[2] Banaee, H., Ahmed, M.U. and Loutfi, A. (2013) Data Mining for Wearable Sensors in Health Monitoring Systems: A Review of Recent Trends and Challenges. Sensors, 13, 17472-17500.
[3] Tao, W., Liu, T., Zheng, R. and Feng, H. (2012) Gait Analysis Using Wearable Sensors. Sensors, 12, 2255-2283.
[4] Frosio, I., Stuani, S. and Borghese, N.A. (2006) Autocalibration of MEMS Accelerometer. IEEE Tran-sactions on Instrumentation and Measurement, 58, 2034-2041.
[5] Glueck, M., Oshinubi, D., Schopp, P. and Manoli, Y. (2014) Real-Time Autocalibration of MEMS Acce-lerometers. IEEE Transactions on Instrumentation and Measurement, 63, 96-105.
[6] Frosio, I., Stuani, S. and Borghese, N.A. (2009) Autocalibration of MEMS Accelerometer. IEEE Tran-sactions on Instrumentation and Measurement, 58, 2034-2041.
[7] Won, S., Golnaraghi, F. and Triaxial, A. (2010) Accelerometer Calibration Method Using a Mathe-matical Model. IEEE Transactions on Instrumentation and Measurement, 59, 2144-2153.
[8] Syed, Z., Aggarwal, P., Goodall, C., Niu, X. and El-Sheimy, N. (2007) A New Multi-Position Calibration Method for MEMS Inertial Navigation Systems. Measurement Science and Technology, 18, 1897-1907.
[9] Khuri, A.I. and Mukhopadhyay, S. (2010) Response Surface Methodology. Wiley Interdisciplinary Reviews: Computational Statistics, 2, 128-149.
[10] Montgomery, D.C. (2005) Design and Analysis of Experiments. John Wiley & Sons, Hoboken.
[11] Myers, R. and Montgomery, D.C. (1995) Response Surface Methodology: Process and Product Optimization Using Designed Experiments. John Wiley & Sons, Hoboken.
[12] Rojas, C.R., Welsh, J.S., Goodwin, G.C. and Feuer, A. (2007) Robust Optimal Experiment Design for System Identification. Automatica, 43, 993-1008.
[13] López-Fidalgo, J. and Garcet-Rodríguez, S.A. (2011) Optimal Experimental Designs When Some Independent Variables Are Not Subject to Control. Journal of the American Statistical Association, 99, 1190-1199.
[14] Atkinson, A., Donev, A. and Tobias, R. (2007) Optimum Experimental Designs, with SAS. Oxford University Press, Oxford.
[15] Cook, D. and Fedorov, V. (1995) Constrained Optimization of Experimental Design. Statistics, 26, 129-148.
[16] Kiefer, J. and Wolfowitz, J. (1962) The Equivalence of Two Extremum Problems. Canadian Journal of Mathematics, 12, 363-366.

comments powered by Disqus
JILSA Subscription
E-Mail Alert
JILSA Most popular papers
Publication Ethics & OA Statement
Frequently Asked Questions
Recommend to Peers
Recommend to Library
Contact Us

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.