The Distribution of the Concentration Ratio for Samples from a Uniform Population


In the present paper we derived, with direct method, the exact expressions for the sampling probability density function of the Gini concentration ratio for samples from a uniform population of size n = 6, 7, 8, 9 and 10. Moreover, we found some regularities of such distributions valid for any sample size.

Share and Cite:

Girone, G. and Nannavecchia, A. (2015) The Distribution of the Concentration Ratio for Samples from a Uniform Population. Applied Mathematics, 6, 57-70. doi: 10.4236/am.2015.61007.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Gini, C. (1914) L’ammontare e la composizionedellaricchezzadellenazioni. Bocca, Torino.
[2] Hoeffding, W. (1948) A Class of Statistics with Asymptotically Normal Distribution. Annals of Mathematical Statistics, 19, 293-325.
[3] Glasser, G.J. (1962) Variance Formulas for the Mean Difference and the Coefficient of Concentration. Journal of the American Statistical Association, 57, 648-654.
[4] Cucconi, O. (1965) Sulla distribuzionecampionaria del rapporto R di concentrazione. Statistica, 25, 119.
[5] Dall’Aglio, G. (1965) Comportamentoasintoticodellestimedelladifferenza media e del rapporto di concentrazione. Metron, 24, 379-414.
[6] Deltas, G. (2003) The Small-Sample Bias of the Gini Coefficient: Results and Implications for Empirical Research. Review of Economics and Statistics, 85, 226-234.
[7] Barrett, G.F. and Donald, S.G. (2009) Statistical Inference with Generalized Gini Indices of Inequality, Poverty, and Welfare. Journal of Business & Economic Statistics, 27, 1-17.
[8] Davidson, R. (2009) Reliable Inference for the Gini Index. Journal of Econometrics, 150, 30-40.
[9] Fakoor, V., Ghalibaf, M.B. and Azarnoosh, H.A. (2011) Asymptotic Behaviors of the Lorenz Curve and Gini Index in Sampling from a Length-Biased Distribution. Statistics and Probability Letters, 81, 1425-1435.
[10] Girone, G. (1968) Sulcomportamentocampionariosimulato del rapporto di concentrazione. Annalidella Facoltà di Economia e Commerciodell’Universitàdegli Studi di Bari, 23, 5-11.
[11] Girone, G. (1971) La distribuzione del rapporto di concentrazione per campionicasuali di variabiliesponenziali. Studi di Probabilità, Statistica e Ricercaoperativa in onore di Giuseppe Pompilj, Oderisi, Gubbio.
[12] Girone, G. (1971) La distribuzione del rapporto di concentrazione per piccolicampioniestratti da unapopolazioneuniforme. Annalidell’Istituto di Statisticadell’Universitàdegli Studi di Bari, 36, 31-52.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.