[1]
|
Miksic, A., Myntti, M., Koivisto, J., Salminen, L. and Alava, M. (2013) Effect of Fatigue and Annual Rings’ Orientation on Mechanical Properties of Wood under Cross-Grain Uniaxial Compression. Wood Science and Technology, 47, 1117-1133. http://dx.doi.org/10.1007/s00226-013-0561-8
|
[2]
|
Hassel, B.I., Modén, C.S. and Berglund, L.A. (2009) Functional Gradient Effects Explain the Low Transverse Shear Modulus in Spruce Full Field Strain Data and a Micromechanics Model. Composites Science and Technology, 69, 2491-2496. http://dx.doi.org/10.1016/j.compscitech.2009.06.025
|
[3]
|
Modén, C.S. and Berglund, L.A. (2008) A Two-Phase Annual Ring Model of Transverse Anisotropy in Softwoods. Composites Science and Technology, 68, 3020-3026. http://dx.doi.org/10.1016/j.compscitech.2008.06.022
|
[4]
|
Lu, G., Lu, G.Q. and Xiao, Z.M. (1999) Mechanical Properties of Porous Materials. Journal of Porous Materials, 6, 359-368. http://dx.doi.org/10.1023/A:1009669730778
|
[5]
|
Madsen, B. and Gamstedt, E.K. (2013) Wood versus Plant Fibers: Similarities and Differences in Composite Applications. Advances in Materials Science and Engineering, 2013, Article ID: 564346.
|
[6]
|
Fratzl, P., Burgert, I. and Keckes, J. (2004) Mechanical Model for the Deformation of the Wood Cell Wall. Zeitschrift fur Metallkunde Metallurgy & Metallurgical Engineering, 95, 579-584.
|
[7]
|
Burgert, I., Keckes, J. and Fratzl, P. (2006) Mechanics of the Wood Cell Wall. In: Stokke, D.D. and Groom, L.H., Eds., Characterization of the Cellulosic Cell Wall, Wiley, Grand Lake, 30-37.
|
[8]
|
Flores, E.S., Souza Neto, E.A. and Pearce, S.C. (2011) A Large Strain Computational Multi-Scale Model for the Dissipative Behaviour of Wood Cell-Wall. Computational Materials Science, 50, 1202-1211.
http://dx.doi.org/10.1016/j.commatsci.2010.11.023
|
[9]
|
Qing, H. and Mishnaevsky Jr., L. (2010) 3D Multiscale Micromechanical Model of Wood: From Annual Rings to Microfibrils. International Journal of Solids and Structures, 47, 1253-1267.
http://dx.doi.org/10.1016/j.ijsolstr.2010.01.014
|
[10]
|
Moëll, M.K. and Minoru Fujita, M. (2004) Fourier Transform Methods in Image Analysis of Compression Wood at the Cellular Level. IAWA Journal, 25, 311-324. http://dx.doi.org/10.1163/22941932-90000368
|
[11]
|
Kaya, S.T. (2007) Determination of the Failure Curve of Transversely Isotropic Fiber Composite Pinewood (Pinus Sylvestris) by the Help of Experimental Studies. M.Sc. Thesis, Gazi University, Institute of Science and Technology, Turkey.
|
[12]
|
Wiedenhoeft, A. (2014) Structure and Function of Wood: Wood Handbook. Chapter 3, Forest Products Library.
http://www.fpl.fs.fed.us/documnts/fplgtr/fplgtr190/chapter_03.pdf.htm
|
[13]
|
Esau, K. (1977) Anatomy of the Seed Plants. 2nd Edition, John Wiley & Sons Ltd, New York.
|
[14]
|
Raven, P., Evert, R. and Eichhorn, S. (1999) Biology of Plants. 6th Edition, W.H. Freeman & Company, New York.
|
[15]
|
Dickison, W. (2000) Integrative Plant Anatomy. Academic Press, New York.
|
[16]
|
Côté, W.A. (1967) Wood Ultrastructure. University of Washington Press, Seattle.
|
[17]
|
Josza, L.A. and Middleton, G.R. (1994) Wood Quality Attributes and Their Practical Implications. Forintek Canada Corp., 2655 East Mall, Vancouver BC Canada V6T 1W5.
|
[18]
|
Logan, J.D. (2014) Sensitivity to Fundamental Wood Properties in the Metriguard Model 7200 HCLT and the CLT.
http://www.metriguard.com/fiber.htm
|
[19]
|
Gardiner, B., Barnett, J., Saranpaa, P. and Gril, J. (2014) The Biology of Reaction Wood. (eBook) Springer, London. http://www.springer.com/life+sciences/forestry/book/978-3-642-10813-6
|