[1]
|
Cheng, C.T., Shen, J.J., Wu, X.Y. and Chau, K.W. (2012) Operation Challenges for Fast-Growing China’s Hydropower Systems and Respondence to Energy Saving and Emission Reduction. Renewable and Sustainable Energy Reviews, 16, 2386-2393. http://dx.doi.org/10.1016/j.rser.2012.01.056
|
[2]
|
EL-Hawary, M.E. and Christensen, G.S. (1979) Optimal Economic Operation of Electric Power Systems. Academic Press, New York, San Francisco, London.
|
[3]
|
Yeh, W.W.-G. (1985) Reservoir Management and Operations Models a State-of-the-Art Review. Water Resources Research, 21, 1797-1818. http://dx.doi.org/10.1029/WR021i012p01797
|
[4]
|
Simonovic, S.P. (1992) Reservoir Systems Analysis: Closing Gap between Theory and Practice. Journal of Water Resources Planning and Management-ASCE, 118, 262-280. http://dx.doi.org/10.1061/(ASCE)0733-9496(1992)118:3(262)
|
[5]
|
Labadie, J.W. (2004) Optimal Operation of Multireservoir Systems: State-of-the-Art Review. Journal of Water Resources Planning and Management-ASCE, 130, 93-111. http://dx.doi.org/10.1061/(ASCE)0733-9496(2004)130:2(93)
|
[6]
|
Shawwash, Z.K., Siu, T.K. and Russell, D. (2000) The BC Hydro Short Term Hydro Scheduling Optimization Model. IEEE Transactions on Power Systems, 15, 1125-1131. http://dx.doi.org/10.1109/59.871743
|
[7]
|
Barros, M.T.L., Tsai, F.T.C., Yang, S.L., Lopes, J.E.G. and Yeh, W.W.G. (2003) Optimization of Large-Scale Hydropower System Operations. Journal of Water Resources Planning and Management-ASCE, 129, 178-188. http://dx.doi.org/10.1061/(ASCE)0733-9496(2003)129:3(178)
|
[8]
|
Catalao, J.P.S., Pousinho, H.M.I. and Mendes, V.M.F. (2010) Scheduling of Head-Dependent Cascaded Hydro Systems: Mixed-Integer Quadratic Programming Approach. Energy Conversion and Management, 51, 524-530. http://dx.doi.org/10.1016/j.enconman.2009.10.017
|
[9]
|
Arce, A., Ohishi, T. and Soares, S. (2002) Optimal Dispatch of Generating Units of the Itaipu Hydroelectric Plant. IEEE Transaction on Power Systems, 17, 154-158. http://dx.doi.org/10.1109/59.982207
|
[10]
|
Howson, H.R. and Sancho, N.G.F. (1975) New Algorithm for the Solution of Multi-State Dynamic Programming Problems. Mathematical Programming, 8, 104-116. http://dx.doi.org/10.1007/BF01580431
|
[11]
|
Turgeon, A. (1981) Optimal Short-Term Hydro Scheduling from the Principles of Progressive Optimality. Water Resources Research, 17, 481-486. http://dx.doi.org/10.1029/WR017i003p00481
|
[12]
|
Cheng, C.T., Shen, J.J., Wu, X.Y. and Chau, K.W. (2012) Short-Term Hydro Scheduling with Discrepant Objectives Using Multi-Step Progressive Optimality Algorithm. Journal of the American Water Resources Association, 48, 464-479. http://dx.doi.org/10.1111/j.1752-1688.2011.00628.x
|
[13]
|
Karamouz, M., Houck, M. and Delleur, J. (1992) Weekly Multipurpose Planning Model for TVA Reservoir System. Journal of Water Resources Planning and Management-ASCE, 118, 71-81. http://dx.doi.org/10.1061/(ASCE)0733-9496(1992)118:1(71)
|
[14]
|
Yi, J., Labadie, J.W. and Stitt, S. (2003) Dynamic Optimal Unit Commitment and Loading in Hydropower Systems. Journal of Water Resources Planning and Management, 129, 388-398. http://dx.doi.org/10.1061/(ASCE)0733-9496(2003)129:5(388)
|
[15]
|
Frangioni, A., Gentile, C. and Lacalandra, F. (2011) Sequential Lagrangian-MILP Approaches for Unit Commitment Problems. Electrical Power and Energy Systems, 33, 585-593. http://dx.doi.org/10.1016/j.ijepes.2010.12.013
|
[16]
|
Franco, P.E.C., Carvalho, M.F. and Soares, A. (1994) A Network Flow Modular for Short-Term Hydro-Dominated Hydrothermal Scheduling Problems. IEEE Transaction on Power Systems, 9, 1016-1022. http://dx.doi.org/10.1109/59.317642
|
[17]
|
Wang, J.W. and Zhang, Y.C. (2012) Short-Term Optimal Operation of Hydropower Reservoirs with Unit Commitment and Navigation. Journal of Water Resources Planning and Management-ASCE, 138, 3-12. http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000142
|
[18]
|
Naresh, R. and Sharma, J., (2002) Short Term Hydro Scheduling Using Two-Phase Neural Network. Electrical Power and Energy Systems, 24, 583-590. http://dx.doi.org/10.1016/S0142-0615(01)00069-2
|
[19]
|
Yuan, X.H., Zhang, Y.C. and Yuan, Y.B. (2008) Improved Self-Adaptive Chaotic Genetic Algorithm for Hydro Generation Scheduling. Journal of Water Resources Planning and Management-ASCE, 134, 319-325. http://dx.doi.org/10.1061/(ASCE)0733-9496(2008)134:4(319)
|
[20]
|
Mantawy, A.H., Soliman, S.A. and El-Hawary, M.E. (2001) An Innovative Simulated Annealing Approach to the Long-Term Hydro Scheduling Problem. International Journal of Electrical Power and Energy Systems, 25, 41-46. http://dx.doi.org/10.1016/S0142-0615(02)00019-4
|
[21]
|
Huang, S.J. (2001) Enhancement of Hydroelectric Generation Scheduling Using Ant Colony System Based Optimization Approaches. IEEE Transactions on Power Systems, 16, 296-301.
|
[22]
|
Wu, J.K., Zhu, J.Q., Cheng, G.T. and Zhang, H.L. (2008) A Hybrid Method for Optimal Scheduling of Short-Term Electric Power Generation of Cascaded Hydroelectric Plants Based on Particle Swarm Optimization and Chance-Constrained Programming. IEEE Transaction on Power Systems, 23, 1570-1579. http://dx.doi.org/10.1109/TPWRS.2008.2004822
|
[23]
|
Chu, W.S. and Yeh, W.W.-G. (1978) A Nonlinear Programming Algorithm for Real-Time Hourly Reservoir Operations. Journal of the American Water Resources Association, 14, 1048-1063. http://dx.doi.org/10.1111/j.1752-1688.1978.tb02245.x
|