[1]
|
Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeney, P.J. (2001) Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Advanced Drug Delivery Reviews, 46, 3-26. http://dx.doi.org/10.1016/S0169-409X(00)00129-0
|
[2]
|
Fahr, A. and Liu, X. (2007) Drug Delivery Strategies for Poorly Water-Soluble Drugs. Expert Opinion on Drug Delivery, 4, 403-416. http://dx.doi.org/10.1517/17425247.4.4.403
|
[3]
|
Dressman, J. and Christos, R. (2007) Drug Solubility: How to Measure It, How to Improve It. Advanced Drug Delivery Reviews, 59, 531-532. http://dx.doi.org/10.1016/j.addr.2007.05.014
|
[4]
|
Merisko-Liversidge, E., Liversidge, G.G. and Cooper, E.R. (2003) Nanosizing: A Formulation Approach for Poorly Water-Soluble Compounds. European Journal of Pharmaceutical Sciences, 18, 113-120. http://dx.doi.org/10.1016/S0928-0987(02)00251-8
|
[5]
|
Müller, R.H., Jacobs, C. and Kayser, O. (2001) Nanosuspensions as Particulate Drug Formulations in Therapy. Rationale for Development and What We Can Expect for the Future. Advanced Drug Delivery Reviews, 47, 3-19. http://dx.doi.org/10.1016/S0169-409X(00)00118-6
|
[6]
|
Hauss, D.J. (2007) Oral Lipid-Based Formulations. Advanced Drug Delivery Reviews, 59, 667-676. http://dx.doi.org/10.1016/j.addr.2007.05.006
|
[7]
|
Cole, E.T., Cade, D. and Benameur, H. (2008) Challenges and Opportunities in the Encapsulation of Liquid and Semi-Solid Formulations into Capsules for Oral Administration. Advanced Drug Delivery Reviews, 60, 747-756. http://dx.doi.org/10.1016/j.addr.2007.09.009
|
[8]
|
Leuner, C. and Dressman, J. (2000) Improving Drug Solubility for Oral Delivery Using Solid Dispersions. European Journal of Pharmaceutics and Biopharmaceutics, 50, 47-60. http://dx.doi.org/10.1016/S0939-6411(00)00076-X
|
[9]
|
Vasconcelos, T., Sarmento, B. and Costa, P. (2007) Solid Dispersions as Strategy to Improve Oral Bioavailability of Poor Water Soluble Drugs. Drug Discovery Today, 12, 1068-1075. http://dx.doi.org/10.1016/j.drudis.2007.09.005
|
[10]
|
Suri, S.S., Fenniri, H. and Singh, B. (2007) Nanotechnology-Based Drug Delivery Systems. Journal of Occupational Medicine and Toxicology, 2, 16. http://dx.doi.org/10.1186/1745-6673-2-16
|
[11]
|
Bunjes, H., Westesen, K. and Koch M.H.J. (1996) Cystallization Tendency and Polymorphic Transitions in TriglyceRide Nanoparticles. International Journal of Pharmaceutics, 129, 159-173. http://dx.doi.org/10.1016/0378-5173(95)04286-5
|
[12]
|
Zimmermann, E., Müller, R.H. and Mader, K. (2000) Influence of Different Parameters on Reconstitution of Lyophilized SLN. International Journal of Pharmaceutics, 196, 211-213. http://dx.doi.org/10.1016/S0378-5173(99)00424-X
|
[13]
|
Ohshima, H., Miyagishima, A., Kurita, T., Makino, Y., Iwao, Y., Sonobe, T. and Itai, S. (2009) Freeze-Dried Nifedipine-Lipid Nanoparticles with Long-Term Nano-Dispersion Stability after Reconstitution. International Journal of Pharmaceutics, 377, 180-184. http://dx.doi.org/10.1016/j.ijpharm.2009.05.004
|
[14]
|
Barman, R.K., Iwao, Y., Funakoshi, Y., Ranneh, A.H., Noguchi, S., Wahed, M.I.I. and Itai, S. (2014) Development of Highly Stable Nifedipine Solid-Lipid Nanoparticles. Chemical and Pharmaceutical Bulletin, 62, 399-406. http://dx.doi.org/10.1248/cpb.c13-00684
|
[15]
|
Barman, R.K., Iwao, Y., Islam, M.R., Funakoshi, Y., Noguchi, S., Wahed, M.I.I. and Itai, S. (2014) In Vivo Pharmacokinetic and Hemocompatible Evaluation of Lyophilization Induced Nifedipine Solid-Lipid Nanoparticle. Journal of Pharmacy and Pharmacology, 5, 455-461. http://dx.doi.org/10.4236/pp.2014.55055
|
[16]
|
Funakoshi, Y., Iwao, Y., Noguchi, S. and Itai, S. (2013) Lipid Nanoparticles with No Surfactant Improve Oral Absorption Rate of Poorly Water-Soluble Drug. International Journal of Pharmaceutics, 451, 92-94. http://dx.doi.org/10.1016/j.ijpharm.2013.04.050
|
[17]
|
Vallet-Regi, M., Ramila, A., Del Real, R. and Perez-Pariente J. (2001) A New Property of MCM-41: Drug Delivery System. Chemistry of Materials, 13, 308-311. http://dx.doi.org/10.1021/cm0011559
|
[18]
|
Fu, T., Lu, J., Guo, L., Zhang, L., Cai, X. and Zhu, H. (2012) Improving Bioavailability of Silybin by Inclusion into SBA-15 Mesoporous Silica Materials. Journal of Nanoscience and Nanotechnology, 12, 3997-4006. http://dx.doi.org/10.1166/jnn.2012.5826
|
[19]
|
Li, L., Huang, X., Liu, T., Liu, H., Hao, N., Chen, D., Zhang, Y. and Tang, F. (2012) Overcoming Multidrug Resistance with Mesoporous Silica Nanorods as Nanocarrier of Doxorubicin. Journal of Nanoscience and Nanotechnology, 12, 4458-4466. http://dx.doi.org/10.1166/jnn.2012.6198
|
[20]
|
Moon, D.S. and Lee, J.K. (2012) Tunable Synthesis of Hierarchical Mesoporous Silica Nanoparticles with Radial Wrinkle Structure. Langmuir, 28, 12341-12347. http://dx.doi.org/10.1021/la302145j
|
[21]
|
Song, B., Wu, C. and Chang, J. (2012) Controllable Delivery of Hydrophilic and Hydrophobic Drugs from Electrospun Poly(Lactic-Co-Glycolic Acid)/Mesoporous Silica Nanoparticles Composite Mats. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100, 2178-2186. http://dx.doi.org/10.1002/jbm.b.32785
|
[22]
|
Shen, S., Chow, P.S., Kim, S., Zhu, K. and Tan, R.B.H. (2008) Synthesis of Carboxyl-Modified Rod-Like SBA-15 by Rapid Co-Condensation. Journal of Colloid and Interface Science, 321, 365-372. http://dx.doi.org/10.1016/j.jcis.2008.02.020
|
[23]
|
Zhang, Y., Zhi, Z., Jiang, T., Zhang, J., Wang, Z. and Wang, S. (2010) Spherical Mesoporous Silica Nanoparticles for Loading and Release of the Poorly Water-Soluble Drug Telmisartan. Journal of Controlled Release, 145, 257-263. http://dx.doi.org/10.1016/j.jconrel.2010.04.029
|
[24]
|
Yasmin, R., Tan, A., Bremmell, K.E. and Prestidge, C.A. (2014) Lyophilized Silica-Lipid Hybrid Carriers for Poorly Water-Soluble Drugs: Physicochemical and in Vitro Pharmaceutical Investigations. Journal of Pharmaceutical Sciences, 103, 2950-2959. http://dx.doi.org/10.1002/jps.23914
|
[25]
|
Simovic, S., Heard, P., Hui, H., Song, Y., Peddie, F., Davey, A.K., Lewis, A., Rades, T. and Prestidge, C.A. (2009) Dry Hybrid Lipid-Silica Microcapsules Engineered from Submicron Lipid Droplets and Nanoparticles as a Novel Delivery System for Poorly Soluble Drugs. Molecular Pharmaceutics, 6, 861-872. http://dx.doi.org/10.1021/mp900063t
|
[26]
|
Tan, A., Simovic, S., Davey, A.K., Rades, T. and Prestidge, C.A. (2009) Silica-Lipid Hybrid (SLH) Microcapsules: A Novel Oral Delivery System for Poorly Soluble Drugs. Journal of Controlled Release, 134, 62-70. http://dx.doi.org/10.1016/j.jconrel.2008.10.014
|
[27]
|
Perge, L., Robitzer, M., Guillemot, C., Devoisselle, J.M., Quignard, F. and Legrand P. (2012) New Solid Lipid Microparticles for Controlled Ibuprofen Release: Formulation and Characterization Study. International Journal of Pharmaceutics, 422, 59-67. http://dx.doi.org/10.1016/j.ijpharm.2011.10.027
|
[28]
|
Kamiya, S., Yamada, M., Kurita, T., Miyagishima, A., Arakawa, M. and Sonobe, T. (2008) Preparation and Stabilization of Nifedipine Lipid Nanoparticles. International Journal of Pharmaceutics, 354, 242-247. http://dx.doi.org/10.1016/j.ijpharm.2007.10.049
|
[29]
|
Carr, R.L. (1965) Evaluating Flow Properties of Solids. Chemical Engineering Journal, 72, 163-168.
|
[30]
|
United States of Pharmacopeia (USP)-29 and National Formulary (NF)-24: 1174.
|
[31]
|
Schwarz, C., Mehnert, W., Lucks, J.S. and Muller, R.H. (1994) Solid Lipid Nanoparticles (SLN) for Controlled Drug Delivery. I. Production, Characterization and Sterilization. Journal of Controlled Release, 30, 83-96. http://dx.doi.org/10.1016/0168-3659(94)90047-7
|