Share This Article:

Infinite Number of Disjoint Chaotic Subsystems of Cellular Automaton Rule 106

Abstract Full-Text HTML XML Download Download as PDF (Size:2570KB) PP. 3256-3263
DOI: 10.4236/am.2014.520303    2,267 Downloads   2,687 Views  

ABSTRACT

In this paper, the dynamics of rule 106, a Chua’s hyper Bernoulli cellular automata rule, is studied and discussed from the viewpoint of symbolic dynamics. It is presented that rule 106 defines a chaotic subsystem which is topologically mixing and possesses the positive topologically entropy. An effective method of constructing its chaotic subsystems is proposed. Indeed, it is interesting to find that this rule is filled with infinitely many disjoint chaotic subsystems. Special attention is paid to each subsystem on which rule 106 is topologically mixing and possesses the positive topologically entropy. Therefore, it is natural to argue that the intrinsic complexity of rule 106 is high from this viewpoint.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Zhao, G. , Chen, F. and Jin, W. (2014) Infinite Number of Disjoint Chaotic Subsystems of Cellular Automaton Rule 106. Applied Mathematics, 5, 3256-3263. doi: 10.4236/am.2014.520303.

References

[1] von Neumann, J. and Burks, A.W. (1966) Theory of Self-Reproducing Automata. University of Illinois Press, Urbana and London.
[2] Hedlund, G.A. (1969) Endomorphisms and Automorphism of the Shift Dynamical System. Theory of Computing Systems, 3, 320-375.
[3] Gardner, M. (1970) The Fantastic Combinations of John Conway’s New Solitaire Game Life. Scientific American, 223, 120-123.
http://dx.doi.org/10.1038/scientificamerican1070-120
[4] Wolfram, S. (1984) Universality and Complexity in Cellular Automata. Physica D, 10, 1-35.
http://dx.doi.org/10.1016/0167-2789(84)90245-8
[5] Wolfram, S. (1986) Theory and Application of Cellular Automata. Word Scientific, Singapore.
[6] Wolfram, S. (2002) A New Kind of Science. Wolfram Media, Inc., Champaign.
[7] Chua, L.O., Sbitnev, V.I. and Yoon, S. (2004) A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science, Part III: Predicting the Unpredictable. International Journal of Bifurcation and Chaos, 14, 3689-3820.
http://dx.doi.org/10.1142/S0218127404011764
[8] Chua, L.O., Guan, J., Sbitnev, V.I. and Jinwook, S. (2007) A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science, Part VII: Isles of Eden. International Journal of Bifurcation and Chaos, 17, 2839-3012.
http://dx.doi.org/10.1142/S0218127407019068
[9] Chua, L.O., Karacs, K., Sbitnev, V.I., Guan, J. and Jinwook, S. (2007) A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science, Part VIII: More Isles of Eden. International Journal of Bifurcation and Chaos, 17, 3741-3894.
http://dx.doi.org/10.1142/S0218127407019901
[10] Chua, L.O. and Pazienza, G.E. (2010) A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science, Part XIV: More Bernoulli -Shift Rules. International Journal of Bifurcation and Chaos, 20, 2253-2425.
http://dx.doi.org/10.1142/S0218127410027155
[11] Guan, J.B., Shen, S.W., Tang, C.B. and Chen, F.Y. (2007) Extending Chua’s Global Equivalence Theorem on Wolfram’s New Kind of Science. International Journal of Bifurcation and Chaos, 17, 4245-4259.
http://dx.doi.org/10.1142/S0218127407019925
[12] Chen, F.Y., Jin, W.F., Chen, G.R., Chen, F.F. and Chen, L. (2009) Chaos of Elementary Cellular Automata Rule 42 of Wolfram’s Class II. Chaos, 19, Article ID: 013140.
[13] Chen, F.Y., Chen, G. and Jin, W.F. (2013) Transitivity and Chaoticity in 1-D Cellular Automata. International Journal of Modern Nonlinear Theory and Application, 2, 69-73.
http://dx.doi.org/10.4236/ijmnta.2013.21A008
[14] Jin, W.F., Chen, F.Y., Chen, G.R., Chen, L. and Chen, F.F. (2010) Extending the Symbolic Dynamics of Chua’s Bernoulli-Shift Rule 56. Journal of Cellular Automata, 5, 121-138.
[15] Chen, G.R., Chen, F.Y., Guan, J.B. and Jin, W.F. (2010) Symbolic Dynamics of Some Bernoullif-Shift Cellular Automata Rules. 2010 International Symposium on Nonlinear Theory and Its Applications, 595-598.
[16] Cattaneo, G., Finelli, M. and Margara, L. (2000) Investigating Topological Chaos by Elementary Cellular Automata Dynamics. Theoretical Computer Science, 244, 219-241.
http://dx.doi.org/10.1016/S0304-3975(98)00345-4
[17] Kitchens, B. (1998) Symbolic Dynamics: One-Sided, Two-Sided and Countable State Markov Shifts. Springer-Verlag, Berlin.
http://dx.doi.org/10.1007/978-3-642-58822-8
[18] Blanchard, F., Glasner, E. and Kolyada, S. (2002) On Li-Yorke Pairs. Journal fur reine und angewandte Mathematik, 547, 51-68.
[19] Jin, W.F. and Chen, F.Y. (2011) Topological Chaos of Universal Elementary Cellular Automata Rule. Nonlinear Dynamics, 63, 217-222.
http://dx.doi.org/10.1007/s11071-010-9798-z
[20] Chen, W., Chen, F.Y., Bian, Y.F. and Chen, J. (2011) Infinite Number of Chaotic Generalized Sub-Shifts of Cellular Automaton Rule 180. 2011 International Conference on Scientific Computing, 226-230.
[21] Cattaneo, G. and Margara, L. (1998) Generalized Sub-Shifts in Elementary Cellular Automata: The “Strange Case” of Chaotic Rule 180. Theoretical Computer Science, 201, 171-187.
http://dx.doi.org/10.1016/S0304-3975(97)00210-7

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.