[1]
|
von Neumann, J. and Burks, A.W. (1966) Theory of Self-Reproducing Automata. University of Illinois Press, Urbana and London.
|
[2]
|
Hedlund, G.A. (1969) Endomorphisms and Automorphism of the Shift Dynamical System. Theory of Computing Systems, 3, 320-375.
|
[3]
|
Gardner, M. (1970) The Fantastic Combinations of John Conway’s New Solitaire Game Life. Scientific American, 223, 120-123. http://dx.doi.org/10.1038/scientificamerican1070-120
|
[4]
|
Wolfram, S. (1984) Universality and Complexity in Cellular Automata. Physica D, 10, 1-35.
http://dx.doi.org/10.1016/0167-2789(84)90245-8
|
[5]
|
Wolfram, S. (1986) Theory and Application of Cellular Automata. Word Scientific, Singapore.
|
[6]
|
Wolfram, S. (2002) A New Kind of Science. Wolfram Media, Inc., Champaign.
|
[7]
|
Chua, L.O., Sbitnev, V.I. and Yoon, S. (2004) A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science, Part III: Predicting the Unpredictable. International Journal of Bifurcation and Chaos, 14, 3689-3820.
http://dx.doi.org/10.1142/S0218127404011764
|
[8]
|
Chua, L.O., Guan, J., Sbitnev, V.I. and Jinwook, S. (2007) A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science, Part VII: Isles of Eden. International Journal of Bifurcation and Chaos, 17, 2839-3012.
http://dx.doi.org/10.1142/S0218127407019068
|
[9]
|
Chua, L.O., Karacs, K., Sbitnev, V.I., Guan, J. and Jinwook, S. (2007) A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science, Part VIII: More Isles of Eden. International Journal of Bifurcation and Chaos, 17, 3741-3894. http://dx.doi.org/10.1142/S0218127407019901
|
[10]
|
Chua, L.O. and Pazienza, G.E. (2010) A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science, Part XIV: More Bernoulli -Shift Rules. International Journal of Bifurcation and Chaos, 20, 2253-2425.
http://dx.doi.org/10.1142/S0218127410027155
|
[11]
|
Guan, J.B., Shen, S.W., Tang, C.B. and Chen, F.Y. (2007) Extending Chua’s Global Equivalence Theorem on Wolfram’s New Kind of Science. International Journal of Bifurcation and Chaos, 17, 4245-4259.
http://dx.doi.org/10.1142/S0218127407019925
|
[12]
|
Chen, F.Y., Jin, W.F., Chen, G.R., Chen, F.F. and Chen, L. (2009) Chaos of Elementary Cellular Automata Rule 42 of Wolfram’s Class II. Chaos, 19, Article ID: 013140.
|
[13]
|
Chen, F.Y., Chen, G. and Jin, W.F. (2013) Transitivity and Chaoticity in 1-D Cellular Automata. International Journal of Modern Nonlinear Theory and Application, 2, 69-73. http://dx.doi.org/10.4236/ijmnta.2013.21A008
|
[14]
|
Jin, W.F., Chen, F.Y., Chen, G.R., Chen, L. and Chen, F.F. (2010) Extending the Symbolic Dynamics of Chua’s Bernoulli-Shift Rule 56. Journal of Cellular Automata, 5, 121-138.
|
[15]
|
Chen, G.R., Chen, F.Y., Guan, J.B. and Jin, W.F. (2010) Symbolic Dynamics of Some Bernoullif-Shift Cellular Automata Rules. 2010 International Symposium on Nonlinear Theory and Its Applications, 595-598.
|
[16]
|
Cattaneo, G., Finelli, M. and Margara, L. (2000) Investigating Topological Chaos by Elementary Cellular Automata Dynamics. Theoretical Computer Science, 244, 219-241. http://dx.doi.org/10.1016/S0304-3975(98)00345-4
|
[17]
|
Kitchens, B. (1998) Symbolic Dynamics: One-Sided, Two-Sided and Countable State Markov Shifts. Springer-Verlag, Berlin. http://dx.doi.org/10.1007/978-3-642-58822-8
|
[18]
|
Blanchard, F., Glasner, E. and Kolyada, S. (2002) On Li-Yorke Pairs. Journal fur reine und angewandte Mathematik, 547, 51-68.
|
[19]
|
Jin, W.F. and Chen, F.Y. (2011) Topological Chaos of Universal Elementary Cellular Automata Rule. Nonlinear Dynamics, 63, 217-222. http://dx.doi.org/10.1007/s11071-010-9798-z
|
[20]
|
Chen, W., Chen, F.Y., Bian, Y.F. and Chen, J. (2011) Infinite Number of Chaotic Generalized Sub-Shifts of Cellular Automaton Rule 180. 2011 International Conference on Scientific Computing, 226-230.
|
[21]
|
Cattaneo, G. and Margara, L. (1998) Generalized Sub-Shifts in Elementary Cellular Automata: The “Strange Case” of Chaotic Rule 180. Theoretical Computer Science, 201, 171-187. http://dx.doi.org/10.1016/S0304-3975(97)00210-7
|