Dynamic Interactions in the Atmosphere
Gabriel Barceló
Advanced Dynamics S.A., Madrid, Spain.
DOI: 10.4236/acs.2014.45073   PDF    HTML   XML   4,863 Downloads   6,039 Views   Citations


Even today, with the great progress that has been made in the scientific, technological and computational fields, we are still stunned by the devastating effects brought about by atmospheric phenomena. This paper aims to propose new hypotheses in the field of dynamics to enhance our understanding of the behaviour of atmospheric disturbances caused by rotating winds. I believe that the criteria of classical dynamics that are applied to vortex systems in the atmosphere should be rigorously reviewed. I propose to establish new hypotheses in the field of dynamics, in order to better interpret rotation in nature. These hypotheses have been structured into a new theory that has been tested experimentally by both ourselves and third parties, with positive results. I propose to use the Theory of Dynamic Interactions (TDI) to interpret the behaviour of systems undergoing successive rotations around different axes—which we will refer to as non-coaxial rotations. I hold that this theory applies to air masses and groups of particles in suspension that are accelerated by rotations. Accordingly, it should be used to interpret the behaviour of tornadoes, cyclones and hurricanes. I believe that this proposal could enhance our understanding of these atmospheric phenomena and improve predictions about them.

Share and Cite:

Barceló, G. (2014) Dynamic Interactions in the Atmosphere. Atmospheric and Climate Sciences, 4, 828-840. doi: 10.4236/acs.2014.45073.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Internet Science Portal at NASA (2006) The NASA/Marshall Space Flight Center Directory of Science.
[2] https://cloud1.arc.nasa.gov/camex3/
[3] Water and Energy Cycle. http://science.nasa.gov/earth-science/focus-areas/water-and-energy-cycle/
[4] (2014) OAR/ERL/National Severe Storms Laboratory (NSSL)/NOAA and Center for Disaster & Extreme Event Preparedness (DEEP Center). www.deep.med.miami.edu/x472.xml
[5] (2014) National Hurricane Center: Hurricane Computer Models.
[6] http://www.goes-r.gov/
[7] Cap de fibló 24 Sep 2014 Sant Lluís, Menorca, Balearic Isles, Spain. Send by J. Drake.
[8] (2010) Energía de los huracanes. Investigación y Ciencia (Scientific American).
[9] Corral, á., Ossó, A. and Llebot, J.E. (2010) Scaling of Tropical-Cyclone Dissipation. Nature Physics, 6, 693-696.http://www.nature.com/nphys/journal/v6/n9/full/nphys1725.html
[10] Yurchak, B.S. (2008) Formula for Spiral Cloud-Rain Bands of a Tropical Cyclone. 28th Conference on Hurricanes and Tropical Meteorology, 1 May 2008.
[11] Malkus, J.S. and Riehl, H. (1960) On the Dynamics and Energy Transformations in Steady-State Hurricanes. Tellus, 12, 1-20. http://dx.doi.org/10.1111/j.2153-3490.1960.tb01279.x
[12] Willoughby, H.E. (1978) A Possible Mechanism for the Formation of Hurricane Rainbands. Journal of Atmospheric Sciences, 35, 838-848.
[13] Science@NASA, 2 April 2004. http://science.nasa.gov/
[14] Theory of Dynamic Interactions.
[15] Barceló, G. (2008) Un mundo en rotación (A Rotating World). Editorial Marcombo, Barcelona, 92.
[16] Barceló, G. (2008) Un mundo en rotación (A Rotating World). Editorial Marcombo, Barcelona, 259.
[17] Barceló, G. (2014) Theory of Dynamic Interactions: The Flight of the Boomerang. Journal of Applied Mathematics and Physics, 2, 569-580. http://dx.doi.org/10.4236/jamp.2014.27063
[18] Barceló, G. (2012) Analysis of Dynamics Fields in Noninertial Systems. World Journal of Mechanics, 2, 175-180. http://www.scirp.org/journal/wjm http://dx.doi.org/10.4236/wjm.2012.23021
[19] Barceló, G. (2005) El vuelo del boomerang (The Flight of the Boomerang). Ed. Marcombo, Barcelona.
[20] Barceló, G. (2013) Theory of Dynamic Interactions: Laws of Motion. World Journal of Mechanics, 3, 328-338. http://dx.doi.org/10.4236/wjm.2013.39036
[21] Barceló, G. (2008) Un mundo en rotación (A Rotating World). Editorial Marcombo, Barcelona, 263.
[22] Barceló, G. (2011) Analysis of Dynamics Field Systems Accelerated by Rotation. Dynamics of Non-Inertial Systems. DeMSET-2011 Congress, Miami.
[23] Pérez, L. (2013) New Evidence on Rotational Dynamics. World Journal of Mechanics, 3, 174-177.
[24] Pérez, L.A. (2013) Reflecting New Evidence on Rotational Dynamics.
[25] Bauluz, E. (2012) New Dynamic Hypotheses. This Video Showed the Experimental Tests Carried out by Advanced Dynamics S. A. to Prove and Justify the Theory of Dynamic Interactions.
[26] Dorado González, M. (2013) Dinámica de sistemas con spin: Un nuevo enfoque. Fundamentos y aplicaciones. ADI Ser, Ed., Madrid.
[27] Dorado González, M. (2006) Equation of Motion of Systems with Internal Angular Momentum—II. arXiv:physics/0603207
[28] Barceló, G. (2013) Technological Applications of the New Theory of Dynamic Interactions. Global Journal of Researches in Engineering: Mechanical and Mechanics Engineering-G, 13, Version 1.0.
[29] Barceló, G. (2014) Dynamic Interaction Confinement. World Journal of Nuclear Science and Technology. http://www.scirp.org/journal/wjnst
[30] Barceló, G. (2008) Un mundo en rotación (A Rotating World). Editorial Marcombo, Barcelona.
[31] Barceló, G. (2010) On the Equivalence Principle. 61st International Astronautical Congress, American Institute of Aero- nautics and Astronautics, Prague, CZ.
http://www.coiim.es/forocientifico/FORO%20CIENTFICO/Documentos/ON_THE_EQUIVALENCE_PRINCI PLE.pdf
[32] Barceló, G. (2013) Proposal of New Criteria for Celestial Mechanics. International Journal of Astronomy and Astrophysics, 3, 385-391. http://dx.doi.org/10.4236/ijaa.2013.34044
[33] Barceló, G. (2013) Imago Universi: A Story of the Human Conception of the Cosmos. Ed. Arpegio, Barcelona. http://www.editorialarpegio.com/
[34] Sanchez Boyer, J. (2013) Video Imago Universi.
http://imagouniversi.com/ http://vimeo.com/62247544
[35] Barceló, G. (2008) Un mundo en rotación (A Rotating World). Editorial Marcombo, Barcelona, 409.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.