[1]
|
Bertsimas, D. and Lo, A.W. (1998) Optimal Control of Liquidation Costs. Journal of Financial Markets, 1, 1-50.
http://dx.doi.org/10.1016/S1386-4181(97)00012-8
|
[2]
|
Almgren, R. and Chriss, N. (2000) Optimal Execution of Portfolio Transactions. Journal of Risk, 3, 5-39.
|
[3]
|
Almgren, R. (2003) Optimal Execution with Nonlinear Impact Functions and Trading Enhanced Risk. Applied Mathematical Finance, 10, 1-18. http://dx.doi.org/10.1137/090763470
|
[4]
|
Almgren, R. (2012) Optimal Trading with Stochastic Liquidity and Volatility. SIAM Journal of Financial Mathematics, 3, 163-181. http://dx.doi.org/10.1137/090763470
|
[5]
|
Gatheral, J. and Schied, A. (2011) Optimal Trade Execution under Geometric Brownian Motion in the Almgren and Chriss Framework. International Journal of Theoretical and Applied Finance, 14, 353-368.
http://dx.doi.org/10.1142/S0219024911006577
|
[6]
|
Schied, A. (2013) Robust Strategies for Optimal Order Execution in the Almgren-Chriss Framework. Applied Mathematical Finance, 20, 264-286. http://dx.doi.org/10.1080/1350486X.2012.683963
|
[7]
|
Ankirchner, S., Blanchet-Scalliet, C. and Eyraud-Loisel, A. (2012) Optimal Liquidation with Directional Views and Additional Information. Working Paper: http://hal.archives-ouvertes.fr/hal-00735298
|
[8]
|
Guéant, O. (2013) Execution and Block Trade Pricing with Optimal Constant Rate of Participation.
http://arxiv.org/pdf/1210.7608v3.pdf
|
[9]
|
Guéant, O. and Lehalle, C.A. (2013) General Intensity Shapes in Optimal Liquidation. Mathematical Finance, Published Online. http://onlinelibrary.wiley.com/doi/10.1111/mafi.12052/pdf
|
[10]
|
Lasry, J.M. and Lions, P.L. (2007) Mean Field Games. Japanese Journal of Mathematics, 2, 239-260.
http://dx.doi.org/10.1007/s11537-007-0657-8
|
[11]
|
Lachapelle, A. and Wolfram, M.T. (2011) On a Mean Field Game Approach Modeling Congestion and Aversion in Pedestrian Crowds. Transportation Research Part B: Methodological, 45, 1572-1589.
|
[12]
|
Guéant, O., Lasry, J.M. and Lions, P.L. (2010) Mean Field Games and Oil Production. In: Lasry, J.M., Lautier, D. and Fessler, D., Eds., The Economics of Sustainable Development, Editions Economica, Paris, 139-162.
|
[13]
|
Lachapelle, A., Salomon, J. and Turinici, G. (2010) Computation of Mean Field Equilibria in Economics. Mathematical Models and Methods in Applied Sciences, 20, 567-588. http://dx.doi.org/10.1142/S0218202510004349
|
[14]
|
Shen, M. and Turinici, G. (2012) Liquidity Generated by Heterogeneous Beliefs and Costly Estimation. Networks and Heterogeneous Media, 7, 349-361. http://dx.doi.org/10.3934/nhm.2012.7.349
|
[15]
|
Couillet, R., Perlaza, S.M., Tembine, H. and Debbah, M. (2012) Electric Vehicles in the Smart Grid: A Mean Field Game Analysis. IEEE Journal on Selected Areas in Communications: Smart Grid Communications Series, 30, 1086-1096.
|
[16]
|
Guéant, O., Lasry, J.M. and Lions, P.L. (2011) Mean Field Games and Applications. In: Cousin, A., Crépey, S., Guéant, O., Hobson, D., Jeanblanc, M., Lasry, J.M., et al., Eds., Paris-Princeton Lectures on Mathematical Finance 2010, Lecture Notes in Mathematics, Springer, Berlin, 205-266.
|
[17]
|
Kalman, R.E. (1960) A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering, 82, 35-45. http://dx.doi.org/10.1115/1.3662552
|
[18]
|
Guéant, O. (2009) A Reference Case for Mean Field Games Models. Journal de Mathématiques Pures et Appliqués, 92, 276-294. http://dx.doi.org/10.1016/j.matpur.2009.04.008
|
[19]
|
Stoer, J. and Bulirsch, R. (1980) Introduction to Numerical Analysis. Springer-Verlag, New York.
http://dx.doi.org/10.1007/978-1-4757-5592-3
|