ExpDes: An R Package for ANOVA and Experimental Designs

Abstract

Analysis of variance (ANOVA) is a usual way for analysing experiments. However, depending on the design and/or the analysis scheme, it can be a hard task. ExpDes, acronym for Experimental Designs, is a package that intends to turn such task easier. Devoted to fixed models and balanced experiments (no missing data), ExpDes allows user to deal with additional treatments in a single run, several experiment designs and exhibits standard and easy-to-interpret outputs. It was developed at the Exact Sciences Institute of the Federal University of Alfenas, Brazil. Stable versions of package ExpDes are available on CRAN (Comprehensive R Archive Network) since 2012. Based on users’ feedback, the package was used to illustrate graduation and post-graduation classes and to carry out data analysis, in Brazil and many other countries. Package ExpDes differs from the other R tools in its easiness in use and cleanliness of output.

Share and Cite:

Ferreira, E. , Cavalcanti, P. and Nogueira, D. (2014) ExpDes: An R Package for ANOVA and Experimental Designs. Applied Mathematics, 5, 2952-2958. doi: 10.4236/am.2014.519280.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Herz, C.S. (1973) Harmonic Synthesis for Subgroups. Annales de l'institut Fourier, 23, 91-123.
http://dx.doi.org/10.5802/aif.473
[2] Fiorillo, C. (2009) An Extension Property for the Figà-Talamanca Herz Algebra. Proceedings of the American Mathematical Society, 137, 1001-1011.
http://dx.doi.org/10.1090/S0002-9939-08-09679-2
[3] McMullen, J.R. (1972) Extensions of Positive-Definite Functions. Memoirs of the American Mathematical Society, 117.
[4] Delaporte, J. and Derighetti, A. (1992) On Herz’ Extension Theorem. Bollettino dell’Unime Matematica Italiana, (7) 6-A, 245-247.
[5] Reiter, H. and Stegman, J.D. (2000) Classical Harmonic Analysis and Locally Compact Groups. Clarendon Press, Oxford.
[6] Derighetti, A. (2004) On Herz’s Projection Theorem. Illinois Journal of Mathematics, 48, 463-476.
[7] Derighetti, A. (2011) Convolution Operators on Groups. Lecture Notes of the Unione Matematica Italiana, 11, Springer-Verlag, Berlin, Heidelberg.
[8] Delaporte, J. and Derighetti, A. (1995) p-Pseudomeasures and Closed Subgroups. Monatshefte für Mathematik, 119, 37-47.
http://dx.doi.org/10.1007/BF01292767

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.