Unified Field Theory in a Nutshell—Elicit Dreams of a Final Theory Series

Abstract

The present reading is part of our on-going attempt at the foremost endeavour of physics since man began to comprehend the heavens and the earth. We present a much more improved Unified Field Theory of all the forces of Nature i.e. the gravitational, the electromagnetic, the weak and the strong nuclear forces. The proposed theory is a radical improvement of Professor Hermann Weyl’s supposedly failed attempt at a unified theory of gravitation and electromagnetism. As is the case with Professor Weyl’s theory, unit vectors in the proposed theory vary from one point to the next, albeit, in a manner such that they are—for better or for worse; compelled to yield tensorial affinities. In a separate reading, the Dirac equation is shown to emerge as part of the description of the these variable unit vectors. The nuclear force fields—i.e., electromagnetic, weak and the strong— together with the gravitational force field are seen to be described by a four-vector field Aμ, which forms part of the body of the variable unit vectors and hence the metric of spacetime. The resulting theory very strongly appears to be a logically consistent and coherent unification of classical and quantum physics and at the same time a grand unity of all the forces of Nature. Unlike most unification theories, the present proposal is unique in that it achieves unification on a fourdimensional continuum of spacetime without the need for extra-dimensions.

Share and Cite:

Nyambuya, G. (2014) Unified Field Theory in a Nutshell—Elicit Dreams of a Final Theory Series. Journal of Modern Physics, 5, 1733-1766. doi: 10.4236/jmp.2014.516173.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Einstein, A. (1920) Science, 51, 8-10. Originally published in London Times; 28 November 1919.
[2] Gibbs, P.E. (2012) Prespacetime Journal, 3, 1008-1009.
[3] Goenner, H.F.M. (2004) Living Reviews in Relativity, 7.
http://relativity.livingreviews.org/Articles/lrr-2004-2/
[4] Gonner, H.F.M. (2014) Living Reviews in Relativity, 17.
http://relativity.livingreviews.org/Articles/lrr-2014-5/
[5] Nyambuya, G.G. (2014) Journal of Modern Physics, 5, 1244-1253.
http://dx.doi.org/10.4236/jmp.2014.514124
[6] Weyl, H.K.H. (1918) Gravitation und Elektrizit¨at, Sitzungsber. Preuss. Akad. Wiss, 26, 465-478.
[7] Einstein, A. (1917) Sitz Preuss Akad. d. Wiss Phys.-Math, 142.
[8] Mach, E. (1893) See: The Science of Mechanics, Open Court, La Salle (1960).
[9] Weyl, H.K.H. (1927) Zeitschrift für Physik, 56, 330-352.
http://dx.doi.org/10.1007/BF01339504
[10] Weyl, H.K.H. (1927) Proceedings of the National Academy of Sciences of the United States of America, 15, 323-334.
http://dx.doi.org/10.1073/pnas.15.4.323
[11] Afriat, A. (2008) How Weyl Stumbled across Electricity While Pursuing Mathematical Justice. 1-17.
http://arxiv.org/abs/0804.2947v1
[12] Alhaidari, A.D. and Jellal, A. (2014) Dirac and Klein-Gordon Equations in Curved Space. 1-8.
http://arxiv.org/abs/1106.2236
[13] Arminjon, M. and Reifler, F. (2013) Brazilian Journal of Physics, 43, 64-77.
http://dx.doi.org/10.1007/s13538-012-0111-0
[14] Arminjon, M. and Reifler, F. (2010) Brazilian Journal of Physics, 40, 242-255. arXiv:0807.0570.
http://dx.doi.org/10.1590/S0103-97332010000200020
[15] Pollock, M.D. (2010) Acta Physica Polonica B, 41, 1827-1846.
[16] Arminjon, M. (2008) Foundations of Physics, 38, 1020-1045.
http://dx.doi.org/10.1007/s10701-008-9249-6
[17] Fock, V.A. (1929) Zeitschrift für Physik, 57, 261-277.
http://dx.doi.org/10.1007/BF01339714
[18] Nyambuya, G.G. (2008) Foundations of Physics, 37, 665-677. arXiv:0709.0936
http://dx.doi.org/10.1007/s10701-008-9226-0
[19] Dirac, P.A.M. (1928) Proceedings of the Royal Society A, 117, 610-624.
http://dx.doi.org/10.1098/rspa.1928.0023
[20] Dirac, P.A.M. (1928) Proceedings of the Royal Society A, 118, 351-361.
http://dx.doi.org/10.1098/rspa.1928.0056
[21] Nyambuya, G.G. (2009) Apeiron, 16, 516-531.
[22] Nyambuya, G.G. (2013) Journal of Modern Physics, 4, 1050-1058.
http://dx.doi.org/10.4236/jmp.2013.48141
[23] Nyambuya, G.G. (2014) On the Preponderance of Matter over Antimatter (Symmetry Properties of the Curved Spacetime Dirac Equations). Advances in High Energy Physics, in Review, 1-6.
http://vixra.org/abs/1409.0208
[24] Stephani, H. (2004) Relativity: An Introduction to Special and General Relativity. 3rd Edition, Cambridge University Press, New York.
[25] Lorentz, H.A. (1892) Arch. Nèerl. Sci., 25, 287-301.
[26] Lorenz, L. (1867) Philosophical Magazine, 34, 363552. Reprinted in Lorentz, H.A., Collected Papers (Martinus Nijhoff, the Hague, 1936) Vol. II, 164-343.
[27] Jackson, J.D. and Okun, L.B. (2001) Reviews of Modern Physics, 73, 663-680.
http://dx.doi.org/10.1103/RevModPhys.73.663
[28] Nevels, R. and Shin, C.S. (2001) IEEE Antennas and Propagation Magazine, 43, 70-71.
[29] Nyambuya, G.G. (2010) Toward Einstein’s Dream—On a Generalized Theory of Relativity. LAP LAMBERT Academic Publishing, Germany.
[30] Maxwell, J.C. (1865) Philosophical Transactions of the Royal Society of London, 155, 459-512.
http://dx.doi.org/10.1098/rstl.1865.0008
[31] Proca, A. (1930) Comptes Rendus (of the Parisian Academy), 190, 1377-1379.
[32] Proca, A. (1930) Comptes Rendus (of the Parisian Academy), 191, 26-29.
[33] Proca, A. (1930) Journal de Physique et le Radium, 1, 235-248.
http://dx.doi.org/10.1051/jphysrad:0193000107023500
[34] Proca, A. (1931) Comptes Rendus (of the Parisian Academy), 193, 832-834.
[35] Proca, A. (1936) Comptes Rendus (of the Parisian Academy), 202, 1366-1368.
[36] Proca, A. (1936) Comptes Rendus (of the Parisian Academy), 202, 1490-1492.
[37] Proca, A. (1936) Comptes Rendus (of the Parisian Academy), 203, 709-711.
[38] Proca, A. (1936) Journal de Physique et le Radium, 7, 347-353.
http://dx.doi.org/10.1051/jphysrad:0193600708034700
[39] Proca, A. (1937) Journal de Physique et le Radium, 8, 23-28.
http://dx.doi.org/10.1051/jphysrad:019370080102300
[40] Proca, A. (1938) Journal de Physique, 7, 61-66.
[41] Nyambuya, G.G. (2014) Gauge Invariant Massive Long Range and Long Lived Photons. Journal of Modern Physics, 5, Article ID: 7501984. In Press.
[42] Nyambuya, G.G. (2007) Apeiron, 14, 320-361.
[43] Nyambuya, G.G. (2008) Apeiron, 15, 1-24.
[44] Hera, J.A. (2007) American Journal of Physics, 75, 652.
[45] Behera, H. (2006) Newtonian Gravitomagnetism and Analysis of Earth Satellite Results. arXiv:gr-qc/0510003v2.
http://arxiv.org/pdf/gr-qc/0510003.pdf
[46] Heaviside, O. (1893) The Electrician, 31, 281-282 & 359.
[47] Heaviside, O. (1894) Electromagnetic Theory. The Electrician Printing and Publishing Co., London, 455-465.
[48] Jefimenko, O.D. (2000) Causality, Electromagnetic Induction and Gravitation: A Different Approach to the Theory of Electromagnetic and Gravitational Fields. Electret Scientific, Star City.
[49] Iorio, L. and Corda, C. (2011) The Open Astronomy Journal, 4, 84-97.
[50] Ciufolini, I., Lucchesi, D., Vespe, F. and Chieppa, F. (1997) EPL (Europhysics Letters), 39, 359.
http://dx.doi.org/10.1209/epl/i1997-00362-7
[51] Yang, C.N. and Mills, R.L. (1954) Physical Review, 96, 191-195.
http://dx.doi.org/10.1103/PhysRev.96.191
[52] Weinberg, S. (1967) Physical Review Letters, 19, 1264-1266.
http://dx.doi.org/10.1103/PhysRevLett.19.1264
[53] Salam, A. and Ward, J.C. (1961) Il Nuovo Cimento, 19, 165-170.
http://dx.doi.org/10.1007/BF02812723
[54] Salam, A. and Ward, J.C. (1964) Physics Letters, 13, 168-171.
http://dx.doi.org/10.1016/0031-9163(64)90711-5
[55] Einstein, A. (1929) Nature, 123, 174-175.
[56] Einstein, A. (1929) Zur Einheitlichen Feldtheorie. Sitzungsber. Preuss. Akad. Wiss., 1, 2-7.
[57] Nyambuya, G.G. (2014) Are Photons Massless or Massive? Journal of Modern Physics, 5, in Press.
[58] Standish, D.W. and Kurtz, E.M., Eds. (2005) The Astronomical Unit Now. In: Transits of Venus: New Views of the Solar System and Galaxy, Number 196 in Proceedings IAU Colloquium, IAU, Cambridge University Press, Cambridge, 163-179.
[59] Krasinsky, G.A. and Brumberg, V.A. (2004) Celestial Mechanics and Dynamical Astronomy, 90, 267-288.
http://dx.doi.org/10.1007/s10569-004-0633-z
[60] Williams, J.G., Boggs, S. and Schillak, D.H., Eds. (2009) The Astronomical Unit Now. In: Transits of Venus: New Views of the Solar System and Galaxy, Number 196 in Proceedings of 16th International Workshop on Laser Ranging, Space Research Centre, Polish Academy of Sciences.
[61] Williams, J.G., Turyshev, S.G. and Boggs, D.H. (2004) Physical Review Letters, 93, 261101.
http://dx.doi.org/10.1103/PhysRevLett.93.261101
[62] Anderson, J.D., Campbell, J.K., Ekelund, J.E., Ellis, J. and Jordan, J.F. (2008) Physical Review Letters, 100, Article ID: 091102.
http://dx.doi.org/10.1103/PhysRevLett.100.091102
[63] Anderson, J.D., Laing, P.A., Lau, E.L., Liu, A.S., Nieto, M.M. and Turyshev, S.G. (1998) Physical Review Letters, 81, 2858-2861.
[64] Zwicky, F. (1933) Helvetica Physica Acta, 6, 110-127.
[65] Rubin, V.C. and Ford Jr., W.K. (1970) Astrophysical Journal, 159, 379.
http://dx.doi.org/10.1086/150317
[66] Rubin, V.C., Roberts, M.S., Graham, J.A., Ford Jr., W.K. and Thonnard, N. (1970) Astronomical Journal, 81, 687-718.
http://dx.doi.org/10.1086/111942
[67] Rubin, V.C., Burstein, D., Ford Jr., W.K. and Thonnard, N. (1985) Astrophysical Journal, 289, 81-98, 101-104.
http://dx.doi.org/10.1086/162866

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.