The Lattice Kinetic Monte Carlo Simulation of Boron Diffusion in SiGe


The lattice kinetic Monte Carlo simulation (kMCS) was applied to study the boron diffusion in Si-SiGe beyond nanotechnology. Both the interstitialcy and kick-out mechanisms of boron diffusion were considered, including the effects of annealing temperatures, boron dopant concentrations, Ge compositions, and concentrations of Si self-interstitial defects (SiI). The effects on boron diffusion caused by single and double layer(s) of SiGe phase with different Ge contents and varying boron concentrations in double layers of SiGe phase were also simulated. The results show that boron diffusion in Si and between SiGe-Si both largely increase as the temperature or concentration of SiI increases, but the boron diffusion between SiGe-Si is much less than in Si. Increasing the Ge contents in SiGe alloy could retard boron diffusion heavily, while increasing the boron concentration on SiGe phase would enhance boron diffusion.

Share and Cite:

Huang, Y. , Ke, R. and Lee, S. (2014) The Lattice Kinetic Monte Carlo Simulation of Boron Diffusion in SiGe. Advances in Chemical Engineering and Science, 4, 529-538. doi: 10.4236/aces.2014.44054.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Fahey, P.M., Griffin, P.B. and Plummer, J.D. (1989) Point Defects and Dopant Diffusion in Silicon. Reviews of Modern Physics, 61, 289-384.
[2] Michel, A.E., Rausch, W., Ronsheim, P.A. and Kastl, R.H. (1987) Rapid Annealing and the Anomalous Diffusion of Ion-Implanted Boron into Silicon. Applied Physics Letters, 50, 416-418.
[3] Servidoli, M., Sourek, Z. and Solmi S. (1987) Some Aspects of Damage Annealing in Ion-Implanted Silicon: Discussion in Terms of Dopant Anomalous Diffusion. Journal of Applied Physics, 62, 1723-1728.
[4] Pichler, P. and Stiebel, D. (2002) Current Status of Models for Transient Phenomena in Dopant Diffusion and Activation. Nuclear Instruments and Methods in Physics Research Section B, 186, 256-264.
[5] Fiory, A. (2002) T. Recent Developments in Rapid Thermal Processing. Journal of Electronic Materials, 31, 981-987.
[6] Solmi, S. and Bersani, M. (2000) Effects of Donor Concentration on Transient Enhanced Diffusion of Boron in Silicon. Journal of Applied Physics, 87, 3696-3700.
[7] Tishkovskii, E.G., Obodnikov, V.I., Taskin, A.A., Feklistov, V. and Seryapin, V.G. (2000) Redistribution of Phosphorus Implanted into Silicon Doped Heavily with Boron. Semiconductors, 34, 629-633.
[8] Moriya, N., Feldman, L.C., Luftman, H.S., King, C.A., Bevk, J. and Freer, B. (1993) Boron Diffusion in Strained Si1-x Ge-x Epitaxial Layers. Physical Review Letters, 71, 883-886.
[9] Cowern, N.E.B., Zalm, P.C., van der Sluis, P., Gravesteijn, D.J. and de Boer, W.B. (1994) Diffusion in Strained SiGe. Physical Review Letters, 72, 2585-2588.
[10] Kuo, P., Hoyt, J.L., Gibbons, J.F., Turner, J.E. and Lefforge, D. (1995) Effects of Strain on Boron Diffusion in Si and Si1-x Gex. Applied Physics Letters, 66, 580-582.
[11] Zangenberg, N.R., Fage-Pedersen, J., Hansen, J.L. and Larsen A.N. (2003) Boron and Phosphorus Diffusion in Strained and Relaxed Si and SiGe. Journal of Applied Physics, 94, 3883-3891.
[12] Wang, C.C., Sheu, Y.M., Liu, S., Duffy, R., Heringa, A., Cowern, N.E.B. and Griffin, P.B. (2005) Boron Diffusion in Strained and Strain-Relaxed SiGe. Materials Science and Engineering: B, 124-125, 39-44.
[13] Lever, R.F., Bonar, J.M. and Willoughby, A.F.W. (1998) Boron Diffusion across Silicon-Silicon Germanium Boundaries. Journal of Applied Physics, 83, 1988-1994.
[14] Zangenberg, N.R., Fage-Pedersen, J., Hansen, J.L. and Larsen, A.N. (2001) Boron Diffusion in Strained and Relaxed Si1-xGex. Defect and Diffusion Forum, 194-199, 703.
[15] Uppal, S., Willoughby, A.F.W., Bonar, J.M., Evans, A.G.R., Cowern, N.E.B., Morris, R. and Dowsett, M.G. (2001) Ion-Implantation and Diffusion Behavior of Boron in Germanium. Physica B: Condensed Matter, 525, 308-310.
[16] Bang, J., Kang, J., Lee, W.J., Chang, K.J. and Kim, H. (2007) Chemical Bonding Effect of Ge Atoms on B Diffusion in Si. Physical Review B, 76, Article ID: 064118.
[17] Car, R., Kelly, R., Oshiyama, A. and Pantelides, S.T. (1985) Microscopic Theory of Impurity-Defect Reactions and Impurity Diffusion in Silicon. Physical Review Letters, 54, 360-363.
[18] Nichols, C.S., de Walle, C.G. and Pantelides, S.T. (1989) Mechanisms of Equilibrium and Non-Equilibrium Diffusion of Dopants in Silicon. Physical Review Letters, 62, 1049-1052.
[19] Zhu, J., de la Rubia, T.D., Yang, L.H., Mailhiot, C. and Gilmer, G.H. (1996) Pseudopotential Calculations of B Diffusion and Pairing in Si. Physical Review B, 54, 4741-4747.
[20] Jung, M.Y.L., Gunawan, R., Braatz, R.D. and Seebauer, E.G. (2004) Pair Diffusion and Kick-Out: Contributions to Di- ffusion of Boron in Silicon. AIChE Journal, 50, 3248-3256.
[21] Bang, J., Kim, H., Kana, J., Lee, W.J. and Chang, K.J. (2007) Retardation of Boron Diffusion in SiGe Alloy. Physica B: Condensed Matter, 401-402, 196-199.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.