Immunotherapy in Cancer Treatment
Aaron J. Smith, John Oertle, Dino Prato
Envita, Scottsdale, AZ, USA.
DOI: 10.4236/ojmm.2014.43020   PDF    HTML   XML   4,261 Downloads   8,370 Views   Citations


Various kinds of immunotherapy treatment for cancer are either available to the public or are in the process of clinical trials. Immunotherapy treatments have the potential to treat cancer with significantly less toxicity than chemotherapy and radiation treatments. An emphasis on cellular infusion as a method of either enhancing the immune system by creating an environment for sequestering the host immune system to attack cancer cells or more directly inserting cells to directly attack cancer cells will be provided in this review. Various forms of cancer vaccines are also discussed in this paper as an important aspect in immunotherapy. This review seeks to describe various methodologies associated with administering immunotherapy in the treatment of cancer.

Share and Cite:

Smith, A. , Oertle, J. and Prato, D. (2014) Immunotherapy in Cancer Treatment. Open Journal of Medical Microbiology, 4, 178-191. doi: 10.4236/ojmm.2014.43020.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Dunn, G.P., Old, L.J. and Schreiber, R.D. (2004) The Immunobiology of Cancer Immunosurveillance and Immunoediting. Immunity, 21, 137-148.
[2] Swann, J.B. and Smyth, M.J. (2007) Immune Surveillance of Tumors. The Journal of Clinical Investigation, 117, 1137-1146.
[3] Cavallo, F., De Giovanni, C., Nanni, P., Forni, G. and Lollini, P.L. (2011) The Immune Hallmarks of Cancer. Cancer Immunology, Immunotherapy, 60, 319-326.
[4] Fairweather, D. and Cihakova, D. (2009) Alternatively Activated Macrophages in Infection and Autoimmunity. Journal of Autoimmunity, 33, 222-230.
[5] Kalinski, P. (2009) Dendritic Cells in Immunotherapy of Established Cancer: Roles of Signals 1, 2, 3 and 4. Current Opinion in Investigational Drugs, 10, 526-535.
[6] Munk, M.E. and Emoto, M. (1995) Functions of T-Cell Subsets and Cytokines in Mycobacterial Infections. European Respiratory Journal, 20, 668-675.
[7] Parker, D.C. (1993) T Cell-Dependent B Cell Activation. Annual Review of Immunology, 11, 331-360.
[8] Boon, T. and van der Bruggen, P. (1996) Human Tumor Antigens Recognized by T lymphocytes. Journal of Experimental Medicine, 183, 725-729.
[9] Breckpot, K. and Escors, D. (2009) Dendritic Cells for Active Anti-Cancer Immunother-Apy: Targeting Activation Pathways through Genetic Modification. Endocrine, Metabolic & Immune Disorders Drug Targets, 9, 328-343.
[10] Campos-Perez, J., Rice, J., Escors, D., Collins, M., Paterson, A., Savelyeva, N. and Stevenson, F.K. (2013) DNA Fusion Vaccine Designs to Induce Tumor-Lytic CD8+ T-Cell Attack via the Immunodominant Cysteine-Containing Epitope of NY-ESO 1. International Journal of Cancer, 133, 1400-1407.
[11] DuPage, M., Mazumdar, C., Schmidt, L.M., Cheung, A.F. and Jacks, T. (2012) Expression of Tumour-Specific Antigens Underlies Cancer Immunoediting. Nature, 482, 405-409.
[12] Van den Eynde, B.J. and van der Bruggen, P. (1997) T Cell Defined Tumor Antigens. Current Opinion in Immunology, 9, 684-693.
[13] Breckpot, K., Dullaers, M., Bonehill, A., van Meirvenne, S., Heirman, C., de Greef, C., van der Bruggen, P. and Thielemans, K. (2003) Lentivirally Transduced Dendritic Cells as a Tool for Cancer Immunotherapy. The Journal of Gene Medicine, 5, 654-667.
[14] Escors, D., Lopes, L., Lin, R., Hiscott, J., Akira, S., Davis, R.J. and Collins, M.K. (2008) Targeting Dendritic Cell Signalling to Regulate the Response to Immunisation. Blood, 111, 3050-3061.
[15] Goold, H.D., Escors, D., Conlan, T.J., Chakraverty, R. and Bennett, C.L. (2011) Conventional Dendritic Cells Are Required for the Activation of Helper-Dependent CD8 T Cell Responses to a Model Antigen after Cutaneous Vaccination with Lentiviral Vectors. The Journal of Immunology, 186, 4565-4572.
[16] Tarbell, K.V., Yamazaki, S. and Steinman, R.M. (2006) The Interactions of Dendritic Cells with Antigen-Specific, Regulatory T Cells That Suppress Autoimmunity. Seminars in Immunology, 18, 93-102.
[17] Iwasaki, A. and Medzhitov, R. (2004) Toll-Like Receptor Control of the Adaptive Immune Responses. Nature Immunology, 5, 987-995.
[18] Pasare, C. and Medzhitov, R. (2004) Toll-Dependent Control Mechanisms of CD4 T Cell Activation. Immunity, 21, 733-741.
[19] Fife, B.T., Pauken, K.E., Eagar, T.N., Obu, T., Wu, J., Tang, Q., Azuma, M., Krummel, M.F. and Bluestone, J.A. (2009) Interactions between PD-1 and PD-L1 Promote Tolerance by Blocking the TCR-Induced Stop Signal. Nature Immunology, 10, 1185-1192.
[20] Karwacz, K., Bricogne, C., Macdonald, D., Arce, F., Bennett, C.L., Collins, M. and Escors, D. (2011) PD-L1 Co-Stimulation Contributes to Ligand-Induced T Cell Receptor Down-Modulation on CD8+ T Cells. EMBO Molecular Medicine, 3, 581-592.
[21] Liechtenstein, T., Dufait, I., Lanna, A., Breckpot, K. and Escors, D. (2012) Modulating Co-Stimulation during Antigen Presentation to Enhance Cancer Immunotherapy. Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry, 12, 224-235.
[22] Escors, D., Bricogne, C., Arce, F., Kochan, G. and Karwacz, K. (2011) On the Mechanism of T Cell Receptor Down-Modulation and Its Physiological Significance. The Journal of Bioscience and Medicine, 1, No. 1.
[23] Zhan, X., Dravid, G., Ye, Z., Hammond, H., Shamblott, M., Gearhart, J., et al. (2004) Functional Antigen-Presenting Leucocytes Derived from Human Embryonic Stem Cells in vitro. The Lancet, 364, 163-171.
[24] Fairchild, P.J., Brook, F.A., Gardner, R.L., Graca, L., Strong, V., Tone, Y., et al. (2000) Directed Differentiation of Dendritic Cells from Mouse Embryonic Stem Cells. Current Biology, 10, 1515-1518.
[25] Vizcardo, R., Masuda, K., Yamada, D., Ikawa, T., Shimizu, K., Fujii, S., et al. (2013) Regeneration of Human Tumor Antigen-Specific T Cells from iPSCs Derived from Mature CD8+ T Cells. Cell Stem Cell, 12, 31-36.
[26] Knorr, D.A., Ni, Z., Hermanson, D., Hexum, M.K., Bendzick, L., Cooper, L.J., et al. (2013) Clinical-Scale Derivation of Natural Killer Cells from Human Pluripotent Stem Cells for Cancer Therapy. Stem Cells Translational Medicine, 2, 274-283.
[27] Seung, L.P., Rowley, D.A., Dubey. P. and Schreiber, H. (1995) Synergy between T-Cell Immunity and Inhibition of Paracrine Stimulation Causes Tumor Rejection. Proceedings of the National Academy of Sciences of the United States of America, 92, 6254-6258.
[28] Antony, P.A., Piccirillo, C.A., Akpinarli, A., Finkelstein, S.E., Speiss, P.J., Surman, D.R., et al. (2005) CD8+ T Cell Immunity against a Tumor/Self-Antigen Is Augmented by CD4+ T Helper Cells and Hindered by Naturally Occurring T Regulatory Cells. The Journal of Immunology, 174, 2591-2601.
[29] Gattinoni, L., Finkelstein, S.E., Klebanoff, C.A., Antony, P.A., Palmer, D.C., Spiess, P.J., et al. (2005) Removal of Homeostatic Cytokine Sinks by Lymphodepletion Enhances the Efficacy of Adoptively Transferred Tumor-Specific CD8+ T Cells. The Journal of Experimental Medicine, 202, 907-912.
[30] Rosenberg, S.A. and Dudley, M.E. (2009) Adoptive Cell Therapy for the Treatment of Patients with Metastatic Melanoma. Current Opinion in Immunology, 21, 233-240.
[31] Rosenberg, S.A., Restifo, N.P., Yang, J.C., Morgan, R.A. and Dudley, M.E. (2008) Adoptive Cell Transfer: A Clinical Path to Effective Cancer Immunotherapy. Nature Reviews Cancer, 8, 299-308.
[32] Dudley, M.E. and Rosenberg, S.A. (2007) Adoptive Cell Transfer Therapy. Seminars in Oncology, 34, 524-531.
[33] Dudley, M.E., Wunderlich, J.R., Yang, J.C., et al. (2005) Adoptive Cell Transfer Therapy Following Non-Myeloablative but Lymphodepleting Chemotherapy for the Treatment of Patients with Refractory Metastatic Melanoma. Journal of Clinical Oncology, 23, 2346-2357.
[34] Dudley, M.E., Yang, J.C., Sherry, R., et al. (2008) Adoptive Cell Therapy for Patients with Metastatic Melanoma: Evaluation of Intensive Myeloablative Chemoradiation Preparative Regimens. Journal of Clinical Oncology, 26, 5233-5239.
[35] Schwartzentruber, D.J., Hom, S.S., Dadmarz, R., et al. (1994) In Vitro Predictors of Therapeutic Response in Melanoma Patients Receiving Tumor-Infiltrating Lymphocytes and Interleukin-2. Journal of Clinical Oncology, 12, 1475- 1483.
[36] Aebersold, P., Hyatt, C., Johnson, S., et al. (1991) Lysis of Autologous Melanoma Cells by Tumor-Infiltrating Lymphocytes: Association with Clinical Response. Journal of the National Cancer Institute, 83, 932-937.
[37] Shen, X., Zhou, J., Hathcock, K.S., et al. (2007) Persistence of Tumor Infiltrating Lymphocytes in Adoptive Immunotherapy Correlates with Telomere Length. Journal of Immunotherapy, 30, 123-129.
[38] Zhou, J., Shen, X., Huang, J., Hodes, R.J., Rosenberg, S.A. and Robbins, P.F. (2005) Telomere Length of Transferred Lymphocytes Correlates with in vivo Persistence and Tumor Regression in Melanoma Patients Receiving Cell Transfer Therapy. Journal of Immunotherapy, 75, 7046-7052.
[39] Robbins, P.F., Dudley, M.E., Wunderlich, J., et al. (2004) Cutting Edge: Persistence of Transferred Lymphocyte Clonotypes Correlates with Cancer Regression in Patients Receiving Cell Transfer Therapy. Journal of Immunotherapy, 173, 7125-7130.
[40] Tran, K.Q., Zhou, J., Durflinger, K.H., et al. (2008) Minimally Cultured Tumor-Infiltrating Lymphocytes Display Optimal Characteristics for Adoptive Cell Therapy. Journal of Immunotherapy, 31, 742-751.
[41] Powell Jr., D.J., Dudley, M.E., Robbins, P.F. and Rosenberg, S.A. (2005) Transition of Late-Stage Effector T Cells to CD27+ CD28+ Tumor-Reactive Effector Memory T Cells in Humans after Adoptive Cell Transfer Therapy. Blood, 105, 241-250.
[42] Verheyden, S. and Demanet, C. (2008) NK Cell Receptors and Their Ligands in Leukemia. Leukemia, 22, 249-257.
[43] Vivier, E., Raulet, D.H., Moretta, A., Caligiuri, M.A., Zitvogel, L., Lanier, L.L., et al. (2011) Innate or Adaptive Immunity? The Example of Natural Killer Activating Ligands on Myeloid Cells. Science, 331, 44-49.
[44] Anfossi, N., Andre, P., Guia, S., Falk, C.S., Roetynck, S., Stewart, C.A., et al. (2006) Human NK Cell Education by Inhibitory Receptors for MHC Class I. Immunity, 25, 331-342.
[45] Raulet, D.H. and Vance, R.E. (2006) Self Tolerance of Natural Killer Cells. Nature Reviews Immunology, 6, 520-531.
[46] Kim, S., Poursine-Laurent, J., Truscott, S.M., Lybarger, L., Song, Y.-J., Yang, L., et al. (2005) Licensing of Natural Killer Cells by Host Major Histocompatibility Complex Class I Molecules. Nature, 436, 709-713.
[47] Gill, S., Vasey, A.E., De Souza, A., Baker, J., Smith, A.T., Kohrt, H.E., Florek, M., et al. (2012) Rapid Development of Exhaustion and Down-Regulation of Eomesodermin Limit the Antitumor Activity of Adoptively Transferred Murine Natural Killer Cells. Blood, 119, 5758-5768.
[48] Helmlinger, G., Yuan, F., Dellian, M. and Jaia, R.K. (1997) Interstitial pH and pO2 Gradients in Solid Tumors in Vivo: High-Resolution Measurements Reveal a Lack of Correlation. Nature Medicine, 3, 177-182.
[49] Parkhurst, M.R., Riley, J.R., Dudley, M.E. and Rosenberg, S.A. (2011) Adoptively Transferred Autologous Natural Killer Cells Persist in Circulation but Do Not Mediate Tumor Regression. Clinical Cancer Research, 17, 6287-6297.
[50] Krause, S.W., Gastpar, R., Andresen, R., Gross, C., Ullrich, H., Thonigs, G., et al. (2004) Treatment of Colon Cancer Patients with ex vivo Heat Shock Protein 70 Peptide-Activated, Autologous Natural Killer Cells: A Clinical Phase I Trial. Clinical Cancer Research, 10, 3699-3707.
[51] Motohashi, S., Ishikawa, A., Ishikawa, E., Otsuji, M., Iizasa, T., Haoaka, H., et al. (2006) A Phase I Study of ex vivo Expanded Natural Killer T Cells in Patients with Advanced and Recurrent Non-Small Lung Cancer. Clinical Cancer Research, 12, 6079-6086.
[52] Koepsell, S.A., Miller, J.S. and McKenna Jr., D.H. (2013) Natural Killer Cells: A Review of Manufacturing and Clinical Utility. Transfusion, 53, 404-410.
[53] Miller, J.S., Soignier, Y., Panoskaltsis-Mortari, A., McNearney, S.A., Yun, G.H., Fautsch, S.K., et al. (2005) Successful Adoptive Transfer and in Vivo Expansion of Human Haploidentical NK Cells in Patients with Cancer. Blood, 105, 3051-3057.
[54] Rubnitz, J.E., Inaba, H., Ribeiro, R.C., Pounds, S., Rooney, B., Bell, T., et al. (2010) NKAML: A Pilot Study to Determine the Safety and Feasibility of Haploidentical Natural Killer Cell Transplantation in Childhood Acute Myeloid Leukemia. Journal of Clinical Oncology, 28, 955-959.
[55] Taniguchi, M., Harada, M., Kojo, S., Nakayama, T. and Wakao, H. (2003) The Regulatory Role of Vα14 NKT Cells in Innate and Acquired Immune Response. Annual Review of Immunology, 21, 483-513.
[56] Godfrey, D.I., MacDonald, H.R., Kronenberg, M., Smyth, M.J. and Van Kaer, L. (2004) NKT Cells: What’s in a Name? Nature Reviews Immunology, 4, 231-237.
[57] Bendelac, A., Savage, P.B. and Teyton, L. (2007) The Biology of NKT Cells. Annual Review of Immunology, 25, 297-336.
[58] Akutsu, Y., Nakayama, T., Harada, M., Kawano, T., Motohashi, S., Shimizu, E., et al. (2002) Expansion of Lung V Alpha 14 NKT Cells by Administration of Alpha-Galactosylceramide-Pulsed Dendritic Cells. Japanese Journal of Cancer Research, 93, 397-403.
[59] Motohashi, S., Kobayashi, S., Ito, T., Magara, K.K., Mikuni, O., Kamada, N., et al. (2002) Pre-Served IFN-α Production of Circulating Vα24 NKT Cells in Primary Lung Cancer Patients. International Journal of Cancer, 102, 159-165.
[60] Toura, I., Kawano, T., Akutsu, Y., Nakayama, T., Ochiai, T. and Taniguchi, M. (1999) Cutting Edge: Inhibition of Experimental Tumor Metastasis by Dendritic Cells Pulsed with α-Galactosylceramide. The Journal of Immunology, 163, 2387-2391.
[61] Ishikawa, E., Motohashi, S., Ishikawa, A., Ito, T., Uchida, T., Kaneko, T., et al. (2005) Dendritic Cell Maturation by CD11c- T Cells and Vα24+ Natural Killer T-Cell Activation by α-Galactosylceramide. International Journal of Cancer, 117, 265-273.
[62] Motohashi, S., Okamoto, Y., Yoshino, I. and Nakayama, T. (2011) Anti-Tumor Immune Responses Induced by iNKT Cell-Based Immunotherapy for Lung Cancer and Head and Neck Cancer. Clinical Immunology, 140, 167-176.
[63] Schmidt-Wolf, I.G., Lefterova, P., Mehta, B.A., Fernandez, L.P., Huhn, D., Blume, K.G., Weissman, I.L. and Negrin, R.S. (1993) Phenotypic Characterization and Identification of Effector Cells Involved in Tumor Cell Recognition of Cytokineinduced Killer Cells. Experimental Hematology, 21, 1673-1679.
[64] Sumitran, S., Anderson, P., Widner, H. and Holgersson, J. (1999) Porcine Embryonic Brain Cell Cytotoxicity Mediated by Human Natural Killer Cells. Cell Transplantation, 8, 601-610.
[65] Mesiano, G., Todorovic, M., Gammaitoni, L., Leuci, V., Giraudo Diego, L., Carnevale-Schianca, F., Fagioli, F., Piacibello, W., Aglietta, M. and Sangiolo, D. (2012) Cytokine-Induced Killer (CIK) Cells as Feasible and Effective Adoptive Immunotherapy for the Treatment of Solid Tumors. Expert Opinion on Biological Therapy, 12, 673-684.
[66] Hontscha, C., Borck, Y., Zhou, H., Messmer, D. and Schmidt-Wolf, I.G.H. (2011) Clinical Trials on CIK Cells: First Report of the International Registry on CIK Cells (IRCC). Journal of Cancer Research and Clinical Oncology, 137, 305-310.
[67] Schmidt-Wolf, I.G., Lefterova, P., Mehta, B.A., Fernandez, L.P., Huhn, D., Blume, K.G., et al. (1993) Phenotypic Characterization and Identification of Effector Cells Involved in Tumor Cell Recognition of Cytokine-Induced Killer Cells. Experimental Hematology, 21, 1673-1679.
[68] Nishimura, R., Baker, J., Beilhack, A., Zeiser, R., Olson, J.A., Sega, E.I., et al. (2008) In vivo Trafficking and Survival of Cytokine-Induced Killer Cells Resulting in Minimal GVHD with Retention of Antitumor Activity. Blood, 112, 2563-2574.
[69] Thorne, S.H., Negrin, R.S. and Contag, C.H. (2006) Synergistic Antitumor Effects of Immune Cell-Viral Biotherapy. Science, 311, 1780-1784.
[70] Ren, X., Yu, J., Liu, H., Zhang, P., An, X., Zhang, N., et al. (2006) Th1 Bias in PBMC Induced by Multicycles of Auto-CIKs Infusion in Malignant Solid Tumor Patients. Cancer Biotherapy and Radiopharmaceuticals, 21, 22-33.
[71] Su, X., Zhang, L., Jin, L., Ye, J., Guan, Z., Chen, R., et al. (2010) Immunotherapy with Cytokine-Induced Killer Cells in Metastatic Renal Cell Carcinoma. Cancer Biotherapy and Radiopharmaceuticals, 25, 465-470.
[72] Schmidt-Wolf, I.G., Finke, S., Trojaneck, B., Denkena, A., Lefterova, P., Schwella, N., et al. (1999) Phase I Clinical Study Applying Autologous Immunological Effector Cells Transfected with the Interleukin-2 Gene in Patients with Metastatic Renal Cancer, Colorectal Cancer and Lymphoma. British Journal of Cancer, 81, 1009-1016.
[73] Li, H., Wang, C., Yu, J., Cao, S., Wei, F., Zhang, W., et al. (2009) Dendritic Cell Activated Cytokine-Induced Killer Cells Enhance the Anti-Tumor Effect of Chemotherapy on Non-Small Cell Lung Cancer in Patients after Surgery. Cytotherapy, 11, 1076-1083.
[74] Takayama, T., Sekine, T., Makuuchi, M., Yamasaki, S., Kosuge, T., Yamamoto, J., et al. (2000) Adoptive Immunotherapy to Lower Postsurgical Recurrence Rates of Hepatocellular Carcinoma: A Randomised Trial. The Lancet, 356, 802-807.
[75] Kumar, H., Kawai, T. and Akira, S. (2011) Pathogen Recognition by the Innate Immune System. International Reviews of Immunology, 30, 16-34.
[76] Kawai, T. and Akira, S. (2010) The Role of Pattern-Recognition Receptors in Innate Immunity: Update on Toll-Like Receptors. Nature Immunology, 11, 373-384.
[77] Kawai, T. and Akira, S. (2011) Toll-Like Receptors and Their Cross Talk with Other Innate Receptors in Infection and Immunity. Immunity, 34, 637-650.
[78] Kawai, T. and Akira, S. (2009) The Roles of TLRs, RLRs and NLR Sin Pathogen Recognition. International Immunology, 21, 317-337.
[79] Hervas-Stubbs, S., Riezu-Boj, J.I., Gonzalez, I., Mancheno, U., Dubrot, J., Azpilicueta, A., et al. (2010) Effects of IFN-Alpha as a Signal-3 Cytokine on Human Naive and Antigen-Experienced CD8+ T Cells. European Journal of Immunology, 40, 3389-3402.
[80] Montoya, M., Schiavoni, G., Mattei, F., Gresser, I., Belardelli, F., Borrow, P., et al. (2002) Type I Interferons Produced by Dendritic Cells Promote Their Phenotypic and Functional Activation. Blood, 99, 3263-3271.
[81] Rudd, B.D., Luker, G.D., Luker, K.E., Peebles, R.S. and Lukacs, N.W. (2007) Type I Interferon Regulates Respiratory Virus Infected Dendritic Cell Maturation and Cytokine Production. Viral Immunology, 20, 531-540.
[82] Hernandez-Gea, V., Alsinet, C. and Llovet, J.M. (2013) Oncolytic Immunotherapeutic Virus in HCC: Can It Compete with Molecular Therapies? Journal of Hepatology, 59, 882-884.
[83] Breitbach, C.J., Burke, J., Jonker, D., Stephenson, J., Haas, A.R., Chow, L.Q., et al. (2011) Intravenous Delivery of a Multi-Mechanistic Cancer-Targeted Oncolytic Poxvirus in Humans. Nature, 477, 99-102.
[84] Breitbach, C.J., Arulanandam, R., De Silva, N., Thorne, S.H., Patt, R., Daneshmand, M., et al. (2012) Oncolytic Vaccinia Virus Disrupts Tumor-Associated Vasculature in Humans. Cancer Research, 73, 1-11.
[85] Winiarska, M., Glodkowska-Mrowka, E., Bil, J. and Golab, J. (2011) Molecular Mechanisms of the Antitumor Effects of Anti-CD20 Antibodies. Frontiers in Bioscience (Landmark Edition), 16, 277-306.
[86] Dunkelberger, J.R. and Song, W.C. (2010) Complement and Its Role in Innate and Adaptive Immune Responses. Cell Research, 20, 34-50.
[87] Zipfel, P.F. and Skerka, C. (2009) Complement Regulators and Inhibitory Proteins. Nature Reviews Immunology, 9, 729-740.
[88] Seimetz, D. (2011) Novel Monoclonal Antibodies for Cancer Treatment: The Trifunctional Antibody Catumaxomab (Removab®). Journal of Cancer, 2, 309-316.
[89] Armeanu-Ebinger, S., Hoh, A., Wenz, J. and Fuchs, J. (2013) Targeting EpCAM (CD326) for Immunotherapy in Hepatoblastoma. Oncoimmunology, 2, e22620.
[90] Vacchelli, E., Galluzzi, L., Fridman, W.H., Galon, J., Sautès-Fridman, C., Tartour, E. and Kroemer, G. (2012) Trial Watch: Chemotherapy with Immunogenic Cell Death Inducers. Oncoimmunology, 1, 179-188.
[91] Kottschade, L.A., Suman, V.J., Perez, D.G., McWilliams, R.R., Kaur, J.S., Amatruda 3rd, T.T., Geoffroy, F.J., Gross, H.M., Cohen, P.A., Jaslowski, A.J., et al. (2013) A Randomized Phase 2 Study of Temozolomide and Bevacizumab or Nab-Paclitaxel, Carboplatin and Bevacizumab in Patients with Unresectable Stage IV Melanoma: A North Central Cancer Treatment Group Study, N0775. Cancer, 119, 586-592.
[92] Weiner, L.M., Belldegrun, A.S., Crawford, J., Tolcher, A.W., Lockbaum, P., Arends, R.H., Navale, L., Amado, R.G., Schwab, G. and Figlin, R.A. (2008) Dose and Schedule Study of Panitumumab Monotherapy in Patients with Advanced Solid Malignancies. Clinical Cancer Research, 14, 502-508.
[93] Ming Lim, C., Stephenson, R., Salazar, A.M. and Ferris, R.L. (2013) TLR3 Agonists Improve the Immunostimulatory Potential of Cetuximab against EGFR+ Head and Neck Cancer Cells. Oncoimmunology, 2, e24677.
[94] Kaplan-Lefko, P.J., Graves, J.D., Zoog, S.J., Pan, Y., Wall, J., Branstetter, D.G., Moriguchi, J., Coxon, A., Huard, J.N., Xu, R., et al. (2010) Conatumumab, a Fully Human Agonist Antibody to Death Receptor 5, Induces Apoptosis via Caspase Activation in Multiple Tumor Types. Cancer Biology Therapy, 9, 618-631.
[95] Fearon, E.R., Pardoll, D.M., Itaya, T., et al. (1990) Interleukin-2 Production by Tumor Cells Bypasses T Helper Function in the Generation of an Antitumor Response. Cell, 60, 397-403.
[96] Golumbek, P.T., Lazenby, A.J., Levitsky, H.I., et al. (1991) Treatment of Established Renal Cancer by Tumor Cells Engineered to Secrete Interleukin-4. Science, 254, 713-716.
[97] Dranoff, G., Jaffee, E., Lazenby, A., et al. (1993) Vaccination with Irradiated Tumor Cells Engineered to Secrete Murine Granulocyte-Macrophage Colony-Stimulating Factor Stimulates Potent, Specific and Long-Lasting Anti-Tumor Immunity. Proceedings of the National Academy of Sciences of the United States of America, 90, 3539-3543.
[98] Kast, W.M., Offringa, R., Peters, P.J., et al. (1989) Eradication of Adenovirus E1-Induced Tumors by E1A-Specific Cytotoxic T Lymphocytes. Cell, 59, 603-614.
[99] Greenberg, P.D. and Riddell, S.R. (1995) Principles for Adoptive T Cell Therapy of Human Viral Diseases. Annual Review in Immunology, 13, 545-586.
[100] Hunder, N.N., Wallen, H., Cao, J., et al. (2008) Treatment of Metastatic Melanoma with Autologous CD4+ T Cells against NY-ESO-1. The New England Journal of Medicine, 358, 2698-2703.
[101] Slingluff, C.L. (2011) The Present and Future of Peptide Vaccines for Cancer: Single Or Multiple, Long or Short, Alone or in Combination. The Cancer Journal, 17, 343-350.
[102] Slingluff Jr., C.L., Petroni, G.R., Chianese-Bullock, K.A., et al. (2007) Immunologic and Clinical Outcomes of a Randomized Phase II Trial of Two Multipeptide Vaccines for Melanoma in the Adjuvant Setting. Clinical Cancer Research, 13, 6386-6395.
[103] Rosenberg, S.A., Yang, J.C. and Restifo, N.P. (2004) Cancer Immunotherapy: Moving beyond Current Vaccines. Nature Medicine, 10, 909-915.
[104] Kirkwood, J.M., Lee, S., Land, S., et al. (2004) E1696: Final Analysis of the Clinical and Immunological Results of a Multicenter ECOG Phase II Trial of Multi-Epitope Peptide Vaccination for Stage IV Melanoma with MART-1 (27-35), gp100 (209-217, 210M) and Tyrosinase (368-376, 370D) (MGT) +/- IFNa2b and GM-CSF. Journal of Clinical Oncology, 22, 7502.
[105] Thery, C., Zitvogel, L. and Amigorena, S. (2002) Exosomes: Composition, Biogenesis and Function. Nature Reviews Immunology, 2, 569-579.
[106] Raposo, G., Nijman, H.W., Stoorvogel, W., et al. (1996) B Lymphocytes Secrete Antigen-Presenting Vesicles. The Journal of Experimental Medicine, 183, 1161-1172.
[107] Mears, R., Craven, R.A., Hanrahan, S., et al. (2004) Proteomic Analysis of Melanoma-Derived Exosomes by Two-Dimensional Polyacrylamide Gel Electrophoresis and Mass Spectrometry. Proteomics, 4, 4019-4031.
[108] Zitvogel, L., Regnault, A., Lozier, A., et al. (1998) Eradication of Established Murine Tumors Using a Novel Cell-Free Vaccine: Dendritic Cell-Derived Exosomes. Nature Medicine, 4, 594-600.
[109] Chen, W., Wang, J., Shao, C., et al. (2006) Efficient Induction of Antitumor T Cell Immunity by Exosomes Derived from Heat-Shocked Lymphoma Cells. European Journal of Immunology, 36, 1598-1607.
[110] Huber, V., Fais, S., Iero, M., et al. (2005) Human Colorectal Cancer Cells Induce T-Cell Death through Release of Proapoptotic Microvesicles: Role in Immune Escape. Gastroenterology, 128, 1796-804.
[111] Andreola, G., Rivoltini, L., Castelli, C., et al. (2002) Induction of Lymphocyte Apoptosis by Tumor Cell Secretion of FasL-Bearing Microvesicles. The Journal of Experimental Medicine, 195, 1303-1316.
[112] Weber, J., Sondak, V.K., Scotland, R., et al. (2003) Granulocyte-Macrophage-Colony-Stimulating Factor Added to a Multi-Peptide Vaccine for Resected Stage II Melanoma. Cancer, 97, 186-200.
[113] Hodge, J.W., Chakraborty, M., Kudo-Saito, C., et al. (2005) Multiple Costimulatory Modalities Enhance CTL Avidity. The Journal of Immunology, 174, 5994-6004.
[114] Jewell, C.M., Bustamante Lop′ez, S.C. and Irvine, D.J. (2011) In Situ Engineering of the Lymph Node Microenvironment via Intranodal Injection of Adjuvant-Releasing Polymer Particles. Proceedings of the National Academy of Sciences of the United States of America, 108, 15745-15750.
[115] Khlebtsov, N. and Dykman, L. (2011) Biodistribution and Toxicity of Engineered Gold Nanoparticles: A Review of in vitro and in vivo Studies. Chemical Society Reviews, 40, 1647-1671.
[116] Almeida, J.P.M., Chen, A.L., Foster, A. and Drezek, R. (2011) In Vivo Biodistribution of Nanoparticles. Nanomedicine, 6, 815-835.
[117] Alexis, F., Pridgen, E., Molnar, L.K. and Farokhzad, O.C. (2008) Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles. Molecular Pharmaceutics, 5, 505-515.
[118] Zhang, G.D., Yang, Z., Lu, W., Zhang, R., Huang, Q., Tian, M., et al. (2009) Influence of Anchoring Ligands and Particle Size on the Colloidal Stability and in Vivo Biodistribution of Polyethylene Glycol-Coated Gold Nanoparticles in Tumor-Xenografted Mice. Biomaterials, 30, 1928-1936.
[119] Cruz, L.J., Rueda, F., Cordobilla, B., Simon, L., Hosta, L., Albericio, F., et al. (2011) Targeting Nanosystems to Human DCs via Fc Receptor as an Effective Strategy to Deliver Antigen for Immunotherapy. Molecular Pharmaceutics, 8, 104-116.
[120] Cruz, L.J., Tacken, P.J., Rueda, F., Domingo, J.C., Albericio, F. and Figdor, C.G. (2012) Targeting Nanoparticles to Dendritic Cells for Immunotherapy. Methods in Enzymology, 509, 143-163.
[121] Niikura, K., Matsunaga, T., Suzuki, T., Kobayashi, S., Yamaguchi, H., Orba, Y., et al. (2013) Gold Nanoparticles as a Vaccine Platform: Influence of Size and Shape on Immunological Responses in Vitro and in Vivo. ACS Nano, 7, 3926-3938.
[122] Almeida, J.P.M., Figueroa, E.R. and Drezek, R.A. (2014) Gold Nanoparticle Mediated Cancer Immunotherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 10, 503-514.
[123] Safari, D., Marradi, M., Chiodo, F., Dekker, H.A.T., Shan, Y., Adamo, R., et al. (2012) Gold Nanoparticles as Carriers for a Synthetic Streptococcus Pneumonia Type 14 Conjugate Vaccine. Nanomedicine, 7, 651-662.
[124] Pokharkar, V., Bhumkar, D., Suresh, K., Shinde, Y., Gairola, S. and Jadhav, S.S. (2011) Gold Nanoparticles as a Potential Carrier for Transmucosal Vaccine Delivery. Journal of Biomedical Nanotechnology, 7, 57-59.
[125] Chen, Y.S., Hung, Y.C., Lin, W.H. and Huang, G.S. (2010) Assessment of Gold Nanoparticles as a Size-Dependent Vaccine Carrier for Enhancing the Antibody Response against Synthetic Foot-and-Mouth Disease Virus Peptide. Nanotechnology, 21, Article ID: 195101.
[126] Lin, A.Y., Mattos Almeida, J.P., Bear, A., Liu, N., Luo, L., Foster, A.E., et al. (2013) Gold Nanoparticle Delivery of Modified CpG Stimulates Macrophages and Inhibits Tumor Growth for Enhanced Immunotherapy. PLoS ONE, 8, e63550.
[127] Huang, Y., Yu, F., Park, Y.-S., Wang, J., Shin, M.-C., Chung, H.S., et al. (2010) Coadministration of Protein Drugs with Gold Nanoparticles to Enable Percutaneous Delivery. Biomaterials, 31, 9086-9091.
[128] Curtsinger, J.M., Lins, D.C. and Mescher, M.F. (2003) Signal 3 Determines Tolerance versus Full Activation of Naive CD8 T Cells: Dissociating Proliferation and Development of Effector Function. The Journal of Experimental Medicine, 197, 1141-1151.
[129] Murugaiyan, G., Agrawal, R., Mishra, G.C., Mitra, D. and Saha, B. (2007) Differential CD40/CD40L Expression Results in Counteracting Antitumor Immune Response. The Journal of Immunology, 178, 2047-2055.
[130] Murugaiyan, G., Mittal, A. and Weiner, H.L. (2010) Identification of an IL-27/Osteopontin Axis in Dendritic Cells and Its Modulation by IFN-g Limits IL-17 Mediated Autoimmune Inflammation. Proceedings of the National Academy of Sciences of the United States of America, 107, 11495-11500.
[131] Shinohara, M.L., Kim, J.H., Garcia, V.A. and Cantor, H. (2008) Engagement of the Type I Interferon Receptor on Dendritic Cells Inhibits T Helper 17 Cell Development: Role of Intracellular Osteopontin. Immunity, 29, 68-78.
[132] Schnurr, M., Toy, T., Shin, A., Wagner, M., Cebon, J. and Maraskovsky, E. (2005) Extranuclear Nucleotide Signaling by P2 Receptors Inhibits IL-12 and Enhances IL-23 Expression in Human Dendritic Cells: A Novel Role for cAMP Pathway. Blood, 105, 1582-1589.
[133] Liu, L., Wang, S., Shan, B., et al. (2008) IL-27-Mediated Activation of Natural Killer Cells and Inflammation Produced Antitumour Effects for Human Oesophageal Carcinoma Cells. Scandinavian Journal of Immunology, 68, 22-29.
[134] Matsui, M., Kishida, T., Nakano, H., Yoshimoto, K., Shin-Ya, M., Shimada, T., Nakai, S., Imanishi, J., Yoshimoto, T., Hisa, Y. and Mazda, O. (2009) Interleukin-27 Activates Natural Killer Cells and Suppresses NK-Resistant Head and Neck Squamous Cell Carcinoma through Inducing Antibody-Dependent Cellular Cytotoxicity. Cancer Research, 69, 2523-2530.
[135] Pot, C., Apetoh, L., Awasthi, A. and Kuchroo, V.K. (2011) Induction of Regulatory Tr1 Cells and Inhibition of T(H)17 Cells by IL-27. Seminars in Immunology, 23, 438-445.
[136] Awasthi, A., Carrier, Y., Peron, J.P., Bettelli, E., Kamanaka, M., Flavell, R.A., Kuchroo, V.K., Oukka, M. and Weiner, H.L. (2007) A Dominant Function for Interleukin 27 in Generating Interleukin 10-Producing Anti-Inflammatory T Cells. Nature Immunology, 8, 1380-1389.
[137] Wang, S., Miyazaki, Y., Shinozaki, Y. and Yoshida, H. (2007) Augmentation of Antigen-Presenting and Th1-Promoting Functions of Dendritic Cells by WSX-1 (IL-27R) Deficiency. The Journal of Immunology, 179, 6421-6428.
[138] Yoshimoto, T., Morishima, N., Mizoguchi, I., Shimizu, M., Nagai, H., Oniki, S., Oka, M., Nishigori, C. and Mizuguchi, J. (2008) Antiproliferative Activity of IL-27 on Melanoma. The Journal of Immunology, 180, 6527-6535.
[139] Shimizu, M., Shimamura, M., Owaki, T., Asakawa, M., Fujita, K., Kudo, M., Iwakura, Y., Takeda, Y., Luster, A.D., Mizuguchi, J. and Yoshimoto, T. (2006) Antiangiogenic and Antitumor Activities of IL-27. The Journal of Immunology, 176, 7317-7324.
[140] Zorzoli, A., Di Carlo, E., Cocco, C., Ognio, E., Ribatti, D., Ferretti, E., Dufour, C., Locatelli, F., Montagna, D. and Airoldi, I. (2012) Interleukin-27 Inhibits the Growth of Pediatric Acute Myeloid Leukemia in NOD/SCID/Il2rg-/-Mice. Clinical Cancer Research, 18, 1630-1640.
[141] Canale, S., Cocco, C., Frasson, C., Seganfreddo, E., Di Carlo, E., Ognio, E., Sorrentino, C., Ribatti, D., Zorzoli, A., Basso, G., Dufour, C. and Airoldi, I. (2011) Interleukin-27 Inhibits Pediatric B-Acute Lymphoblastic Leukemia Cell Spreading in a Preclinical Model. Leukemia, 25, 1815-1824.
[142] Cocco, C., Giuliani, N., Di Carlo, E., Ognio, E., Storti, P., Abeltino, M., Sorrentino, C., Ponzoni, M., Ribatti, D. and Airoldi, I. (2010) Interleukin-27 Acts as Multifunctional Antitumor Agent in Multiple Myeloma. Clinical Cancer Research, 16, 4188-4197.
[143] Cocco, C., Di Carlo, E., Zupo, S., Canale, S., Zorzoli, A., Ribatti, D., Morandi, F., Ognio, E. and Airoldi, I. (2012) Complementary IL-23 and IL-27 Anti-Tumor Activities Cause Strong Inhibition of Human Follicular and Diffuse Large B-Cell Lymphoma Growth in Vivo. Leukemia, 26, 1365-1374.
[144] Hisada, M., Kamiya, S., Fujita, K., Belladonna, M.L., Aoki, T., Koyanagi, Y., Mizuguchi, J. and Yoshimoto, T. (2004) Potent Antitumor Activity of Interleukin-27. Cancer Research, 64, 1152-1156.
[145] Chiyo, M., Shimozato, O., Yu, L., Kawamura, K., Iizasa, T., Fujisawa, T. and Tagawa, M. (2005) Expression of IL-27 in Murine Carcinoma Cells Produces Antitumor Effects and Induces Protective Immunity in Inoculated Host Animals. International Journal of Cancer, 115, 437-442.
[146] Ho, M.Y., Leu, S.J., Sun, G.H., Tao, M.H., Tang, S.J. and Sun, K.H. (2009) IL-27 Directly Restrains Lung Tumorigenicity by Suppressing Cyclooxygenase-2-Mediated Activities. The Journal of Immunology, 183, 6217-6226.
[147] Oniki, S., Nagai, H., Horikawa, T., Furukawa, J., Belladonna, M.L., Yoshimoto, T., Hara, I. and Nishigori, C. (2006) Interleukin-23 and Interleukin-27 Exert Quite Different Antitumor and Vaccine Effects on Poorly Immunogenic Melanoma. Cancer Research, 66, 6395-6404.
[148] Salcedo, R., Stauffer, J.K., Lincoln, E., Back, T.C., Hixon, J.A., Hahn, C., Shafer-Weaver, K., Malyguine, A., Kastelein, R. and Wigginton, J.M. (2004) IL-27 Mediates Complete Regression of Orthotopic Primary and Metastatic Murine Neuroblastoma Tumors: Role for CD8+ T Cells. The Journal of Immunology, 173, 7170-7182.
[149] Matsui, M., Kishida, T., Nakano, H., Yoshimoto, K., Shin-Ya, M., Shimada, T., Nakai, S., Imanishi, J., Yoshimoto, T., Hisa, Y. and Mazda, O. (2009) Interleukin-27 Activates Natural Killer Cells and Suppresses NK-Resistant Head and Neck Squamous Cell Carcinoma through Inducing Antibody-Dependent Cellular Cytotoxicity. Cancer Research, 69, 2523-2530.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.