[1]
|
Zeng, C. and Elser, V. (1990) Numerical Studies of Antiferromagnetism on a Kagome Net. Physical Review B, 42, 8436-8444. http://dx.doi.org/10.1103/PhysRevB.42.8436
|
[2]
|
Elstner, N. and Young, A.P. (1994) Spin-1/2 Heisenberg Antiferromagnet on the Kagome Lattice: High-Temperature Expansion and Exact-Diagonalization Studies. Physical Review B, 50, 6871-6876. http://dx.doi.org/10.1103/PhysRevB.50.6871
|
[3]
|
Nakamura, T. and Miyashita, S. (1995) Thermodynamic Properties of the Quantum Heisenberg Antiferromagnet on the Kagome Lattice. Physical Review B, 52, 9174-9177. http://dx.doi.org/10.1103/PhysRevB.52.9174
|
[4]
|
Lecheminant, P., Bernu, B., Lhuillier, C., Pierre, L. and Sindzingre, P. (1997) Order versus Disorder in the Quantum Heisenberg Antiferromagnet on the Kagome Lattice Using Exact Spectra Analysis. Physical Review B, 56, 2521-2529. http://dx.doi.org/10.1103/PhysRevB.56.2521
|
[5]
|
Depenbrock, S., McCulloch, I.P. and Schollwoeck, U. (2012) Nature of the Spin-Liquid Ground State of the S = 1/2 Heisenberg Model on the Kagome Lattice. Physical Review Letter, 109, 067201-067201-6. http://dx.doi.org/10.1103/PhysRevLett.109.067201
|
[6]
|
Misguich, G., Serban, D. and Pasquier, V. (2002) Quantum Dimer Model on the Kagome Lattice: Solvable DimerLiquid and Ising Gauge Theory. Physical Review Letter, 89, 137202-137202-4. http://dx.doi.org/10.1103/PhysRevLett.89.137202
|
[7]
|
Hermele, M., Ran, Y., Lee, P.A. and Wen, X.G. (2008) Properties of an Algebraic Spin Liquid on the Kagome Lattice. Physical Review B, 77, 224413-224413-23. http://dx.doi.org/10.1103/PhysRevB.77.224413
|
[8]
|
Iqbal, Y., Becca, F., Sorella, S. and Poilblanc, D. (2013) Gapless Spin-Liquid Phase in the Kagome Spin-1/2 Heisenberg Antiferromagnet. Physical Review B, 87, 060405-060405-5. http://dx.doi.org/10.1103/PhysRevB.87.060405
|
[9]
|
Messio, L., Bernu, B. and Lhuillier, C. (2012) Kagome Antiferromagnet: A Chiral Topological Spin Liquid? Physical Review Letter, 108, 207204-207204-5. http://dx.doi.org/10.1103/PhysRevLett.108.207204
|
[10]
|
Clark, B.K., Kinder, J.M. Neuscamman, E., Chan, K.C. and Lawler, M.J. (2013) Striped Spin Liquid Crystal Ground State Instability of Kagome Antiferromagnets. Physical Review Letter, 111, 187205-87205-5.
|
[11]
|
Fak, B., Kermarrec, E., Messio, L., Bernu, B., Lhuillier, C., Bert, F., Mendels, P., Koteswararao, B., Bouquet, F., Ollivier, J., Hillier, A.D., Amato, A., Colman, R.H. and Wills, A.S. (2012) Kapellasite: A Kagome Quantum Spin Liquid with Competing Interactions Experiments. Physical Review Letter, 109, 037208-037208-5. http://dx.doi.org/10.1103/PhysRevLett.109.037208
|
[12]
|
Misguich, G. and Bernu, B. (2005) Specific Heat of the S = 1/2 Heisenberg Model on the Kagome Lattice: HighTemperature Series Expansion Analysis. Physical Review B, 71, 014417-014417-7. http://dx.doi.org/10.1103/PhysRevB.71.014417
|
[13]
|
Misguich, G. and Sindzingre, P. (2007) Magnetic Susceptibility and Specific Heat of the Spin-1/2 Heisenberg Model on the Kagome Lattice and Experimental Data on ZnCu3(OH)6Cl2. The European Physical Journal B, 59, 305-309. http://dx.doi.org/10.1140/epjb/e2007-00301-6
|
[14]
|
Singh, R.R.P. and Oitmaa, J. (2012) High-Temperature Series Expansion Study of the Heisenberg Antiferromagnet on the Hyperkagome Lattice: Comparison with Na4Ir3O8. Physical Review B, 85, 104406-104406-4. http://dx.doi.org/10.1103/PhysRevB.85.104406
|
[15]
|
Laeuchli, A.M., Sudan, J. and Sorensen, E.S. (2011) Ground-State Energy and Spin Gap of Spin-12 Kagome-Heisenberg Antiferromagnetic Clusters: Large-Scale Exact Diagonalization Results. Physical Review B, 83, 212401-212404. http://dx.doi.org/10.1103/PhysRevB.83.212401
|
[16]
|
Nakano, H. and Sakai, T. (2011) Numerical-Diagonalization Study of Spin Gap Issue of the Kagome Lattice Heisenberg Antiferromagnet. Journal of the Physical Society of Japan, 80, 053704-053708. http://dx.doi.org/10.1143/JPSJ.80.053704
|
[17]
|
Isoda, M., Nakano, H. and Sakai, T. (2011) Specific Heat and Magnetic Susceptibility of Ising-Like Anisotropic Heisenberg Model on Kagome Lattice. Journal of the Physical Society of Japan, 80, 084704-084706. http://dx.doi.org/10.1143/JPSJ.80.084704
|
[18]
|
Weise, A., Wellein, G., Alvermann, A. and Fehske, H. (2006) The Kernel Polynomial Method. Review Modern Physics, 78, 275-306. http://dx.doi.org/10.1103/RevModPhys.78.275
|
[19]
|
Iitaka, T., Nomura, S., Hirayama, H., Zhao, X., Aoyagi, Y. and Sugano, T. (1997) Calculating the Linear Response Functions of Noninteracting Electrons with a Time-Dependent Schroedinger Equation. Physical Review E, 56, 12221229. http://dx.doi.org/10.1103/PhysRevE.56.1222
|
[20]
|
Jaklic, J. and Prelpvsek, P. (1994) Lanczos Method for the Calculation of Finite-Temperature Quantities in Correlated Systems. Physical Review B, 49, 5065-5068. http://dx.doi.org/10.1103/PhysRevB.49.5065
|
[21]
|
Jaklic, J. and Prelpvsek, P. (2000) Finite-Temperature Properties of Doped Antiferromagnets. Advance Physics, 49, 1-92. http://dx.doi.org/10.1080/000187300243381
|
[22]
|
Schnack, J. and Wendland, O. (2010) Properties of Highly Frustrated Magnetic Molecules Studied by the Finite-Temperature Lanczos Method. The European Physical Journal B, 78, 535-541. http://dx.doi.org/10.1140/epjb/e2010-10713-8
|
[23]
|
Long, M.W., Prelovsek, P., El Shawish, S., Karadamoglou, J. and Zotos, X. (2003) Finite-Temperature Dynamical Correlations Using the Microcanonical Ensemble and the Lanczos Algorithm. Physical Review B, 68, 235106-235106-10. http://dx.doi.org/10.1103/PhysRevB.68.235106
|
[24]
|
Capone, M., de’Medici, L. and Georges, A. (2007) Solving the Dynamical Mean-Field Theory at Very Low Temperatures Using the Lanczos Exact Diagonalization. Physical Review B, 76, 245116-245116-6. http://dx.doi.org/10.1103/PhysRevB.76.245116
|
[25]
|
Aichhorn, M., Daghofer, M., Evertz, H.G. and von der Linden, W. (2003) Low-Temperature Lanczos Method for Strongly Correlated Systems. Physical Review B, 67, 161103-161103-4. http://dx.doi.org/10.1103/PhysRevB.67.161103
|
[26]
|
Zerec, I., Schmidt, B. and Thalmeier, P. (2006) Kondo Lattice Model Studied with the Finite Temperature Lanczos Method. Physical Review B, 73, 245108-245108-6. http://dx.doi.org/10.1103/PhysRevB.73.245108
|
[27]
|
Schmidt, B., Thalmeier, P. and Shannon, N. (2007) Magnetocaloric Effect in the Frustrated Square Lattice J1-J2 Model. Physical Review B, 76, 125113-125113-19. http://dx.doi.org/10.1103/PhysRevB.76.125113
|
[28]
|
Hams, A. and De Raedt, H. (2000) Fast Algorithm for Finding the Eigenvalue Distribution of Very Large Matrices. Physical Review E, 62, 4365-4377. http://dx.doi.org/10.1103/PhysRevE.62.4365
|
[29]
|
Iitaka, T. and Ebisuzaki, T. (2004) Random Phase Vector for Calculating the Trace of a Large Matrix. Physical Review E, 69, 057701-057701-4. http://dx.doi.org/10.1103/PhysRevE.69.057701
|