Share This Article:

Global Proteomics of the Extremophile Black Fungus Cryomyces antarcticus Using 2D-Electrophoresis

Abstract Full-Text HTML Download Download as PDF (Size:2774KB) PP. 978-995
DOI: 10.4236/ns.2014.612090    2,852 Downloads   3,480 Views   Citations

ABSTRACT

The microcolonial black fungus Cryomyces antarcticus is an extremophile organism growing on and in rock in the Antarctic desert. Ecological plasticity and stress tolerance make it a perfect model organism for astrobiology. 2D-gel electrophoresis and MALDI-TOF/TOF mass spectrometry were performed to explore the protein repertoire, which allows the fungus to survive in the harsh environment. Only a limited number of proteins could be identified by using sequence homologies in public databases. Due to the rather low identification rate by sequence homology, this study reveals that a major part of the proteome of C. antarcticus varies significantly from other fungal species.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Zakharova, K. , Sterflinger, K. , Razzazi-Fazeli, E. , Noebauer, K. and Marzban, G. (2014) Global Proteomics of the Extremophile Black Fungus Cryomyces antarcticus Using 2D-Electrophoresis. Natural Science, 6, 978-995. doi: 10.4236/ns.2014.612090.

References

[1] Cary, S.C., McDonald, I.R., Barrett, J.E. and Cowan, D.A. (2010) On the Rocks: The Microbiology of Antarctic Dry Valley Soils. Nature Review Microbiology, 8, 129-138.
http://dx.doi.org/10.1038/nrmicro2281
[2] Cockell, C.S., Lee, P., Schuerger, A.C., Hidalgo, L., Jones, J.A. and Stokes, M.D. (2001) Microbiology and Vegetation of Micro-Oases and Polsar Desert, Haughton Impact Crater, Devon Island, Nunavut, Canada. Antarctic and Alpine Research, 33, 306-318.
[3] Navarro-Gonzales, R., Rainey, F.A., Molina, P., Bagaley, D.R., Hollen, B.J., De la Rosa, J., Small, A.M., Quinn, R.C., Grunthaner, F.J., Cacaeres, L., Gomez-Silva, B. and McKay, C.P. (2003) Mars-Like Soils in the Atacama Desert, Chile, and the Dry Limit of Microbial Life. Science, 302, 1018-1021.
http://dx.doi.org/10.1126/science.1089143
[4] Direito, S.O.L., Ehrenfreund, P., Marees, A., Staats, M., Foing, B. and Roling, W.F.M. (2011) A Wide Variety of Putative Extremophiles and Large Beta-Diversity at the Mars Desert Research Station (Utah). International Journal of Astrobiology, 10, 191-207.
http://dx.doi.org/10.1017/S1473550411000012
[5] Onofri, S., Selbmann, L., De Hoog, G.S., Grube, M., Barreca, D., Ruisi, S. and Zucconi, L. (2007) Evolution and Adaptation of Fungi at Boundaries of Life. Advances in Space Research, 40, 1657-1664.
http://dx.doi.org/10.1016/j.asr.2007.06.004
[6] Friedmann, I.E. (1982) Endolithic Microorganisms in the Antarctic Cold Desert. Nature, 215, 1045-1053.
[7] Selbmann, L., De Hoog, G.S., Mazzaglia, A., Friedmann, E.I. and Onofri, S. (2005) Fungi at the Edge of Life— Cryptoendolothic Fungi from the Antarctic Desert. Studies in Mycology, 51, 1-32.
[8] Selbmann, L., De Hoog, G.S., Gerrits van den Ende, A.H.G., Ruibal, C., De Leo, F., Zucconi, L., Isola, D., Ruisi, S. and Onofri, S. (2008) Drought Meets Acid: Three New Genera in a Dothidealean Clade of Extremotolerant Fungi. Studies in Mycology, 61, 1-20.
http://dx.doi.org/10.3114/sim.2008.61.01
[9] Gorbushina, A.A., Kollova, E.R. and Sherstneva, O.A. (2008) Cellular Responses of Microcolonial Rock Fungi to Long Term Desiccation and Subsequent Rehydration. Studies in Mycology, 61, 91-97.
http://dx.doi.org/10.3114/sim.2008.61.09
[10] Dadachova, E., Bryan, R.A., Huang X., Moadel, T., Schweitzer, A.D., Aisen, P., Nosanchuk, J.D. and Casadeval, L.A. (2007) Ionizing Radiation Changes the Electronic Properties of Melanin and Enhances the Growth of Melanized Fungi. Plos One, 5, Article ID: e457.
http://dx.doi.org/10.1371/journal.pone.0000457
[11] Sterflinger, K., Tesei, D. and Zakharova, K. (2012) Fungi in Hot and Cold Deserts with Particular Reference to Microcolonial Fungi. Fungal Ecology, 5, 453-462.
http://dx.doi.org/10.1016/j.funeco.2011.12.007
[12] Zakharova, K., Tesei, D., Marzban, G., Dijksterhuis, J. and Wyatt, T. (2013) Microcolonial Fungi on Rocks: A Life in Constant Drought? Mycopathologia, 175, 537-547.
http://dx.doi.org/10.1007/s11046-012-9592-1
[13] Onofri, S., Barreca, D., Selbmann, L., Isola, D., Rabbow, E., Horneck, G., De Vera, J.P.P., Hatton, J. and Zucconi, L. (2008) Resistance of Antarctic Black Fungi and Cryptoendolithic Communities to Simulated Space and Martian Conditions. Studies in Mycology, 61, 99-109.
http://dx.doi.org/10.3114/sim.2008.61.10
[14] Zakharova, K., Marzban, G., De Vera, J.-P., Lorek, A. and Sterflinger, K. (2014) Protein Patterns of Black Fungi under Simulated Mars-Like Conditions. Scientific Reports, 4, 5114.
http://dx.doi.org/10.1038/srep05114
[15] Marzban, G., Tesei, D. and Sterflinger, K. (2013) A Review beyond the Borders: Proteomics of Microcolonial Black Fungi and Black Yeasts. Natural Sciences, 5, 640-645.
[16] Isola, D., Marzban, G., Selbmann, L., Onofori, S., Laimer, M. and Sterflinger, K. (2011) Sample Preparation and 2-DE Procedure for Protein Expression Profiling of Black Microclonial Fungi. Fungal Biology, 115, 971-977.
http://dx.doi.org/10.1016/j.funbio.2011.03.001
[17] Tesei, D., Marzban, G., Zakharova, K., Isola, D., Selbman, L. and Sterflinger, K. (2012) Alteration of Protein Patterns in Black Rock Inhabiting Fungi as a Response to Different Temperatures. Fungal Biology, 116, 932-940.
http://dx.doi.org/10.1016/j.funbio.2012.06.004
[18] Bradford, M.M. (1976) A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry, 72, 248-254.
http://dx.doi.org/10.1016/0003-2697(76)90527-3
[19] Shevchenko, A., Wilm, M., Vorm, O. and Mann, M. (1996) Mass Spectrometric Sequencing of Proteins from Silver Stained Polyacrylamide Gels. Analytical Chemistry, 68, 850-858.
http://dx.doi.org/10.1021/ac950914h
[20] Wang, W., Vinocur, B., Shoseyov, O. and Altman, A. (2004) Role of Plant Heat-Shock Proteins and Molecular Chaperones in the Abiotic Stress Response. Trends in Plant Science, 9, 244-252.
http://dx.doi.org/10.1016/j.tplants.2004.03.006
[21] Zhang, H.Y., He, H., Chen, L.B., Liang, M.Z., Wang, X.F., Liu, X.G., He, G.M., Chen, R.S., Ma, L.G. and Deng, X.W. (2008) A Genome-Wide Transcription Analysis Reveals a Close Correlation of Promoter INDEL Polymorphism and Heterotic Gene Expression in Rice Hybrids. Molecular Plant, 1, 720-731.
http://dx.doi.org/10.1093/mp/ssn022
[22] De Maio, A. (1999) Heat Shock Proteins: Facts, Thoughts, and Dreams. Shock, 11, 1-12.
[23] Wu, C. (1995) Heat Shock Transcription Factors: Structure and Regulation. Annual Review of Cell and Developmental Biology, 11, 441-469.
http://dx.doi.org/10.1146/annurev.cb.11.110195.002301
[24] Santoro, M.G. (2000) Heat Shock Factors and the Control of the Stress Response. Biochemical Pharmacology, 59, 55-63. http://dx.doi.org/10.1016/S0006-2952(99)00299-3
[25] Miernyk, J.A. (1997) The 70 kDa Stress-Related Proteins as Molecular Chaperones. Trends in Plant Science, 2, 180-187. http://dx.doi.org/10.1016/S1360-1385(97)85224-7
[26] Pauwels, K., Van Molle, I., Tommassen, J. and Van Gelder, P. (2007) Chaperoning Anfinsen: The Steric Foldases. Molecular Microbiology, 64, 917-922.
http://dx.doi.org/10.1111/j.1365-2958.2007.05718.x
[27] Freeman, S., Ginzburg, C. and Katan, J. (1989) Heat Shock Protein Synthesis in Propagules of Fusarium oxysporum f. sp. niveum. Physiology and Biochemistry, 79, 1054-1058.
[28] Glick, B.S. (1995) Can HSP70 Proteins Act as Force-Generating Motors? Cell, 80, 11-14.
http://dx.doi.org/10.1016/0092-8674(95)90444-1
[29] Feder, M.E. and Hofmann, G.E. (1999) Heat-Shock Proteins, Molecular Chaperones, and the Stress Response: Evolutionary and Ecological Physiology. Annual Review in Physiology, 61, 243-282.
http://dx.doi.org/10.1146/annurev.physiol.61.1.243
[30] Kocabiyik, S. and Aygar, S. (2012) Improvement of Protein Stability and Enzyme Recovery under Stress Conditions by Using a Small HSP (tpv-HSP 14.3) from Thermoplasma volcanium. Process Biochemistry, 47, 1676-1683.
http://dx.doi.org/10.1016/j.procbio.2011.11.014
[31] Gogarten, J.P., Kibak, H., Dittrich, P., Taiz, L., Bowman, E.J., Bowman, B.J., Manolson, M.F., Poole, R.J., Date, T., Oshima, T., Konishi, J., Denda, K. and Yoshida, M. (1989) Evolution of the Vacuolar H+-ATPase: Implications for the Origin of Eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 86, 6661-6665. http://dx.doi.org/10.1073/pnas.86.17.6661
[32] Nishi, T. and Forgas, M. (2002) The Vacuolar (H+)-ATPasas-Nature’s Most Versatile Proton Pumps. Nature, 3, 94-103.
[33] Beyenbach, K.W. and Wieczorek, H. (2006) The V-Type H+ ATPase: Molecular Structure and Function, Physiological Role and Regulation. The Journal of Experimental Biology, 209, 577-589.
http://dx.doi.org/10.1242/jeb.02014
[34] Forgas, M. (1998) Structure, Function and Regulation of the Vacuolar (H+)-ATPases. FEBS Letters, 440, 258-263.
http://dx.doi.org/10.1016/S0014-5793(98)01425-2
[35] Sagermann, M., Stevens, T.H. and Matthews, B.W. (2001) Crystal Structure of the Regulatory Subunit H of the V-Type ATPasa of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 98, 7134-7139.
http://dx.doi.org/10.1073/pnas.131192798
[36] Dietz, K.J., Tavakoli, N., Kluge, C., Mimura, T., Sharma, S.S., Harris, G.C., Chardonnens, A.N. and Golldack, D. (2001) Significance of the V-Type ATPase for the Adaptation for the Stressful Growth Conditions and Its Regulation on the Molecular and Biochemical Level. Journal of Experimental Botany, 52, 1969-1980.
http://dx.doi.org/10.1093/jexbot/52.363.1969
[37] Wojtyla, L., Kosmala, A. and Garnczarska, M. (2013) Lupine Embryo Axes under Salinity Stress. II. Mitochondrial Proteome Response. Acta Physiologiae Plantarum, 35, 2383-2392.
http://dx.doi.org/10.1007/s11738-013-1273-2
[38] Stock, D., Leslie, A.G.W. and Walker, J.E. (1999) Molecular Architecture of the Rotary Motor in ATP Synthase. Science, 286, 1700-1705.
http://dx.doi.org/10.1126/science.286.5445.1700
[39] Rial, D.V., Arakaki, A.K. and Ceccerelli, E.A. (2000) Interaction of the Targeting Sequence of Chloroplast Precursors with HSP70 Molecular Chaperones. European Journal of Biochemistry, 267, 6239-6248.
http://dx.doi.org/10.1046/j.1432-1327.2000.01707.x
[40] Spormann, D.O., Heim, J. and Wolf, D.H. (1991) Carboxypeptidase yscS: Gene Structure and Function of the Vacuolar Enzyme. European Journal of Biochemistry, 197, 399-405.
http://dx.doi.org/10.1111/j.1432-1033.1991.tb15924.x
[41] Winther, J. and Sørensen, P. (1991) Propeptide of Carboxypeptidase Y Provides a Chaperone-Like Function as Well as Inhibition of the Enzymatic Activity. Proceedings of the National Academy of Sciences of the United States of America, 88, 9330-9334. http://dx.doi.org/10.1073/pnas.88.20.9330
[42] Andersson, A., Jordan, D., Achneider, G. and Lindqvist, Y. (1996) Crystal Structure of the Ternary Complex of 1,3,8-Trihydroxynaphthalene Reductase from Magnaporthe grisea with NADPH and an Active-Site Inhibitor. Structure, 4, 1161-1170. http://dx.doi.org/10.1016/S0969-2126(96)00124-4
[43] Vidal-Cros, A. and Boccara, M. (1998) Identification of Four Chitin Synthase Genes in the Rice Blast Disease Agent Magnaporthe grisea. FEMS Microbiology Letters, 165, 103-109.
http://dx.doi.org/10.1111/j.1574-6968.1998.tb13133.x
[44] Sumimoto, H. (2008) Structure, Regulation and Evolution of Nox-Family NADPH Oxidases That Produce Reactive Oxygen Species. FEBS Journal, 275, 3249-3277.
http://dx.doi.org/10.1111/j.1742-4658.2008.06488.x
[45] Torres, M.A., Jones, J.D.G. and Dangl, J.L. (2005) Pathogen-Induced, NADPH Oxidase-Derived Reactive Oxygen Intermediates Suppress Spread of Cell Death in Arabidopsis thaliana. Nature Genetics, 37, 1130-1134.
http://dx.doi.org/10.1038/ng1639
[46] Takemoto, D., Tanaka, A. and Scott, B. (2007) NADPH Oxidases in Fungi: Diverse Roles of Reactive Oxygen Species in Fungal Cellular Differentiation. Fungal Genetics and Biology, 44, 1065-1076.
http://dx.doi.org/10.1016/j.fgb.2007.04.011
[47] Kayano, Y., Tanaka, A., Akano, F., Scott, B. and Takemoto, D. (2013) Differential Roles of NADPH Oxidases and Associated Regulators in Polarized Growth, Condidation and Hyphal Fusion in the Symbiotic Fungus Epichloë festucae. Fungal Genetics and Biology, 56, 87-97.
http://dx.doi.org/10.1016/j.fgb.2013.05.001
[48] Lara-Ortiz, T., Riveros-Rosas, H. and Aguirre, J. (2003) Reactive Oxygen Species Generated by Microbal NADPH Oxidase NoxA Regulate Sexual Development in Aspergillus nidulans. Molecular Microbiology, 50, 1241-1255.
http://dx.doi.org/10.1046/j.1365-2958.2003.03800.x
[49] Wilk, S., Wilk, E. and Magnusson, R.P. (1998) Purification, Characterization, and Cloning of a Cytosolic Aspartyl Aminopeptidase. The Journal of Biological Chemistry, 273, 15961-15970.
http://dx.doi.org/10.1074/jbc.273.26.15961
[50] Wery, J., Dalderup, M.J.M., Linde, J.T., Boekhout, T. and Van Ooyen, A.J.J. (1998) Structural and Phylogenetic Analysis of the Actin Gene from the Yeast Phaffia rhodozyma. Yeast, 12, 641-651.
http://dx.doi.org/10.1002/(SICI)1097-0061(19960615)12:7<641::AID-YEA952>3.0.CO;2-2
[51] Plamann, M., Minke, P.F., Tinsley, J.H. and Bruno, K.S. (1994) Cytoplasmic Dynein and Actin-Related Protein Arp1 Are Required for Normal Nuclear Distribution in Filamentous Fungi. The Journal of Cell Biology, 127, 139-149.
http://dx.doi.org/10.1083/jcb.127.1.139
[52] Bourett, T.M. and Howard, R.J. (1991) Ultrastructural Immunolocalization of Actin in a Fungus. Protoplasma, 163, 199-202. http://dx.doi.org/10.1007/BF01323344
[53] Helgason, T., Watson, I.J. and Young, J.P.W. (2006) Phylogeny of the Glomerales and Diversisporales (Fungi: Glomeromycota) from Actin and Elongation Factor 1-Alpha Sequences. FEMS Microbiology Letters, 229, 127-132.
http://dx.doi.org/10.1016/S0378-1097(03)00802-4
[54] Mach, J., Poliak, P., Matusková, A., Zársky, V., Janata, J., Lukes, J. and Tachezy, J. (2013) An Advanced System of the Mitochondrial Processing Peptidase and Core Protein Family in Trypanosoma brucei and Multiple Origins of the Core I Subunit in Eukaryotes. Genome Biology and Evolution, 5, 860-875.
http://dx.doi.org/10.1093/gbe/evt056
[55] Kucera, T., Otyepka, M., Matusková, A., Samad, A., Kutejová, E. and Janata, J. (2013) A Computational Study of the Glycine-Rich Loop of Mitochondrial Processing Peptidase. PLoS One, 8, Article ID: e74518.
http://dx.doi.org/10.1371/journal.pone.0074518
[56] Teixeira, P.F. and Glaser, E. (2013) Processing Peptidases in Mitochondria and Chloroplasts. Biochimica et Biophysica Acta, 1833, 360-370.
http://dx.doi.org/10.1016/j.bbamcr.2012.03.012
[57] Pozuelo-Rubio, M. (2012) 14-3-3 Proteins Are Regulators of Autophagy. Cells, 1, 754-773.
[58] Dougherty, M.K. and Morrison, D.K. (2004) Unlocking the Code of 14-3-3. Journal of Cell Science, 117, 1875-1884.
http://dx.doi.org/10.1242/jcs.01171
[59] Mielnichuk, N. and Pérez-Martín, J. (2008) 14-3-3 Regulates the G2/M Transition in the Basidiomycete Ustilago maydis. Fungal Genetics and Biology, 45, 1206-1215.
http://dx.doi.org/10.1016/j.fgb.2008.05.010
[60] Conti, A., Sueur, C., Lupo, J., Brazzolotto, X., Burmeister, W.P., Manet, E., Gruffat, H., Morand, P. and Boyer, V. (2013) Interaction of Ubinuclein-1, a Nuclear and Adhesion Junction Protein, with the 14-3-3 Epsilon Protein in Epithelial Cells: Implication of the PKA Pathway. European Journal of Cell Biology, 92, 105-111.
http://dx.doi.org/10.1016/j.ejcb.2012.12.001
[61] Mackintosh, C. (2004) Dynamic Interactions between 14-3-3 Proteins and Phosphoproteins Regulate Diverse Cellular Processes. Biochemical Journal, 381, 329-342.
http://dx.doi.org/10.1042/BJ20031332
[62] Sluchanko, N.N. and Gusev, N.B. (2012) Oligomeric Structure of 14-3-3 Protein: What Do We Know about Monomers? FEBS Letters, 586, 4249-4256.
http://dx.doi.org/10.1016/j.febslet.2012.10.048
[63] Macakova, E., Kopecka, M., Kukacka, Z., Veisova, D., Novak, P., Man, P., Obsil, T. and Obsilova, V. (2013) Structural Basis of the 14-3-3 Protein Dependent Activation of Yeast Neutral Trehalase Nth1. Biochimica et Biophysica Acta, 1830, 4491-4499.
http://dx.doi.org/10.1016/j.bbagen.2013.05.025
[64] Kleppe, R., Ghorbani, S., Martinez, A. and Haavik, J. (2013) Modelling Cellular Signal Communication Mediated by Phosphorylation Dependent Interaction with 14-3-3 Proteins. FEBS Letters, 588, 92-98.
[65] Keightley, M.C., Crowhurst, M.O., Layton, J.E., Beilharz, T., Markmiller, S., Varma, S., Hogan, B.M., Jong-Curtain, T.A., Heath, J.K. and Lieschke, G.J. (2013) In Vivo Mutation of Pre-mRNA Processing Factor 8 (Prpf8) Affects Transcript Splicing, Cell Survival and Myeloid Differentiation. FEBS Letters, 587, 2150-2157.
http://dx.doi.org/10.1016/j.febslet.2013.05.030
[66] Orvain, C., Matre, V. and Gabrielsen, O.S. (2008) The Transcription Factor c-Myb Affects Pre-mRNA Splicing. Biochemical and Biophysical Research Communications, 372, 309-313.
http://dx.doi.org/10.1016/j.bbrc.2008.05.054
[67] Onofri, S., Selbmann, L., Zucconi, L. and Pagano, S. (2004) Antarctic Microfungi as Models for Exobiology. Planetary and Space Science, 52, 229-237.
http://dx.doi.org/10.1016/j.pss.2003.08.019
[68] De Hoog, G.S. and Grube, M. (2008) Black Fungal Extremes. Studies in Mycology, 61, 198.
[69] Van Leeuwen, M.R., Wyatt, T.T., Golovina, E.A., Stam, H., Menke, H., Dekker, A., Stark, J., Wösten, H.A.B. and Dijksterhuis, J. (2013) Germination of Conidia of Aspergillus niger Is Accompanied by Major Changes in RNA Profiles. Studies in Mycology, 74, 59-70.
http://dx.doi.org/10.3114/sim0009
[70] Dadachova, E. and Casadevall, A. (2008) Ionizing Radiation: How Fungi Cope, Adapt, and Exploit with the Help of Melanin. Current Opinion in Microbiology, 11, 525-531.
http://dx.doi.org/10.1016/j.mib.2008.09.013

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.