[1]
|
Mason, A.F. and Coates, G.W. (2007) Coordination Polymerization: Synthesis of New Homo- and Copolymer Architectures from Ethylene and Propylene Using Homogeneous Ziegler-Natt Polymerization Catalysts. In: Matyjaszewski, K., Gnanou, Y. and Leibler L., Eds., Macromolecular Engineering, Wiley-VCH, Weinheim, 1, 217-248. http://dx.doi.org/10.1002/9783527631421.ch6.
|
[2]
|
Brintzinger, H.H., Fischer, D., Mülhaupt, R., Rieger, B. and Waymouth, R.M. (1995) Stereospecific Olefin Polymerization with Chiral Metallocene Catalysts. Angewandte Chemie International Edition in English, 34, 1143-1170. http://dx.doi.org/10.1002/anie.199511431
|
[3]
|
Kaminsky, W. (1996) New Polymers by Metallocene Catalysis. Macromolecular Chemistry and Physics, 197, 3907-3945. http://dx.doi.org/10.1002/macp.1996.021971201
|
[4]
|
Kaminsky, W. and Arndt, M. (1997) Metallocenes for Polymer Catalysis. Advances in Polymer Science, 127, 143-187. http://dx.doi.org/10.1007/BFb0103631
|
[5]
|
Suhm, J., Heinemann, J., Worner, C., Müller, P., Stricker, F., Kressler, J., Okuda, J. and Mülhaupt, R. (1998) Novel Polyolefin Materials via Catalysis and Reactive Processing. Macromolecular Symposia, 129, 1-28. http://dx.doi.org/10.1002/masy.19981290103
|
[6]
|
McKnight, A.L. and Waymouth, R.M. (1998) Group 4 ansa-Cyclopentadienyl-Amido Catalysts for Olefin Polymerization. Chemical Reviews, 98, 2587-2598. http://dx.doi.org/10.1021/cr940442r
|
[7]
|
Britovsek, G.J.P., Gibson, V.C. and Wass, D.F. (1999) TheSearch for New-Generation Olefin Polymerization Catalysts: Life beyond Metallocenes. Angewandte Chemie International Edition in English, 38, 428-447. http://dx.doi.org/1433-7851/99/3804-0429
|
[8]
|
Gibson, V.C. and Spitzmesser, S.K. (2003) Advances in Non-Metallocene Olefin Polymerization Catalysis. Chemical Reviews, 103, 283-316. http://dx.doi.org/10.1021/cr980461r
|
[9]
|
Bolton, P.D. and Mountford, P. (2005) Transition Metal Imido Compounds as Ziegler-Natta Olefin Polymerisation Catalysts. Advanced Synthesis & Catalysis, 347, 355-366. http://dx.doi.org/10.1002/adsc.200404267
|
[10]
|
Gladysz, J. A. (Ed.) (2000) Frontiers in Metal-Catalyzed Polymerization. Chemical Reviews, 100, 1167-1682. http://dx.doi.org/10.1021/cr000450
|
[11]
|
Guan, Z. (Ed.) (2009) Metal Catalysts in Olefin Polymerization. Topics in Organometallic Chemistry, 26, 3-251.
|
[12]
|
Nomura, K., Liu, J., Padmanabhan, S. and Kitiyanan, B. (2007) Nonbridged Half-Metallocenes Containing Anionic Ancillary Donor Ligands: New Promising Candidates as Catalysts for Precise Olefin Polymerization. Journal of Molecular Catalysis A: Chemical, 267, 1-29. http://dx.doi.org/10.1016/j.molcata.2006.11.006
|
[13]
|
Nomura, K. (2009) Half-Titanocenes Containing Anionic Ancillary Donor Ligands as Promising New Catalysts for Precise Olefin Polymerization. Dalton Transactions, 41, 8811-8823. http://dx.doi.org/10.1039/B910407K
|
[14]
|
Nomura, K. and Liu, J. (2011) Half-Titanocenes for Precise Olefin Polymerisation: Effects of Ligand Substituents and Some Mechanistic Aspects. Dalton Transactions, 40, 7666-7682. http://dx.doi.org/10.1039/C1DT10086F
|
[15]
|
Schellenberg, J. (Ed.) (2010) Syndiotactic Polystyrene—Synthesis, Characterization, Processing, and Applications. Wiley-VCH, Hoboken.
|
[16]
|
Tomotsu, N., Ishihara, N., Newman, T.H. and Malanga, M.T. (1998) Syndiospecific Polymerization of Styrene. Journal of Molecular Catalysis A: Chemical, 128, 167-190. http://dx.doi.org/10.1016/S1381-1169(97)00171-4
|
[17]
|
Schellenberg, J. (2009) Recent Transition Metal Catalysts for Syndiotactic Polystyrene. Progress in Polymer Science, 34, 688-718. http://dx.doi.org/10.1016/j.progpolymsci.2009.04.002
|
[18]
|
Nomura, K. (2010) Syndiotactic Polystyrene: Synthesis, Characterization, Processing, and Applications. Wiley-VCH, Hoboken, 60-91.
|
[19]
|
Nomura, K. (2011) Syndiospecific Styrene Polymerization and Ethylene/Styrene Copolymerization Using Half-Titanocenes: Ligand Effects and Some New Mechanistic Aspects. Catalysis Surveys from Asia, 14, 33-49. http://dx.doi.org/10.1007/s10563-010-9086-4
|
[20]
|
Chung, T.C. (2002) Functionalization of Polyolefins. Academic Press, San Diego.
|
[21]
|
Boffa, L.S. and Novak, B.M. (2000) Copolymerization of Polar Monomers with Olefins Using Transition-Metal Complexes. Chemical Reviews, 100, 1479-1494. http://dx.doi.org/10.1021/cr990251u
|
[22]
|
Chung, T.C. (2002) Synthesis of Functional Polyolefin Copolymers with Graft and Block Structures. Progress in Polymer Science, 27, 39-85. http://dx.doi.org/10.1016/S0079-6700(01)00038-7
|
[23]
|
Chung, T.C. (2012) Functionalization of Polypropylene with High Dielectric Properties: Applications in Electric Energy Storage. Green and Sustainable Chemistry, 2, 29-37. http://dx.doi.org/10.4236/gsc.2012.22006
|
[24]
|
Boaen, N.K. and Hillmyer, M.A. (2005) Post-Polymerization Functionalization of Polyolefins. Chemical Society Reviews, 34, 267-275. http://dx.doi.org/10.1039/B311405H
|
[25]
|
Nakamura, A., Ito, S. and Nozaki, K. (2009) Coordination-Insertion Copolymerization of Fundamental Polar Monomers. Chemical Reviews, 109, 5215-5244. http://dx.doi.org/10.1021/cr900079r
|
[26]
|
Nakamura, A., Anselment, T.M.J., Claverie, J., Goodall, B., Jordan, R.F., Mecking, S., Rieger, B., Sen, A., van Leeuwen, P.W.N.M. and Nozaki, K. (2013) Ortho-Phosphinobenzenesulfonate: A Superb Ligand for Palladium-Catalyzed Coordination-Insertion Copolymerization of Polar Vinyl Monomers. Account of Chemical Research, 46, 1438-1449. http://dx.doi.org/10.1021/ar300256h
|
[27]
|
Doak, K.W. (1986) Low Density Polyethylene (High Pressure). In: Mark, H.F., Ed., Encyclopedia of Polymer Science and Engineering, John Wiley & Sons, New York, 6, 386-429.
|
[28]
|
Moad, G. (1999) The Synthesis of Polyolefin Graft Copolymers by Reactive Extrusion. Progress in Polymer Science, 24, 81-142. http://dx.doi.org/10.1016/S0079-6700(98)00017-3
|
[29]
|
Nomura, K. and Kitiyanan, B. (2008) Recent Progress in Precise Synthesis of Polyolefins Containing Polar Functionalities by Transition Metal Catalysis. Current Organic Synthesis, 5, 217-226. http://dx.doi.org/10.2174/157017908785133456
|
[30]
|
Nomura, K. (2010) New Approaches in Precise Synthesis of Polyolefins Containing Polar Functionalities by OlefinCopolymerizations Using Transition Metal Catalysts. Journal of Synthetic Organic Chemistry, Japan, 68, 1150-1158. http://dx.doi.org/10.5059/yukigoseikyokaishi.68.1150
|
[31]
|
Chung, T.C., Lu, H.L. and Li, C.L. (1994) Synthesis and Functionalization of Unsaturated Polyethylene: Poly(ethy-lene-co-1,4-hexadiene). Macromolecules, 27, 7533-7537.
http://dx.doi.org/10.1021/ma00104a005
|
[32]
|
Itagaki, K., Fujiki, M. and Nomura, K. (2007) Effect of Cyclopenta Dienyl and Anionic Donor Ligands on Monomer Reactivities in Copolymerization of Ethylene with 2-Methyl-1-pentene by Nonbridged Half-Titanocenes-Cocatalyst Systems. Macromolecules, 40, 6489-6499. http://dx.doi.org/10.1021/ma0700429
|
[33]
|
Nomura, K., Hatanaka, Y., Okumura, H., Fujiki, M. and Hasegawa, K. (2004) Polymerization of 1,5-Hexadiene by the Nonbridged Half-Titanocene Complex-MAO Catalyst System: Remarkable Difference in the Selectivity of Repeated 1,2-Insertion. Macromolecules, 37, 1693-1695. http://dx.doi.org/10.1021/ma049938t
|
[34]
|
Nomura, K., Takemoto, A., Hatanaka, Y., Okumura, H., Fujiki, M. and Hasegawa, K. (2006) Polymerization of 1,5-Hexadiene by Half-Titanocenes-MAO Catalyst Systems: Factors Affecting the Selectivity for the Favored Repeated 1,2-Insertion. Macromolecules, 39, 4009-4017.
http://dx.doi.org/10.1021/ma0604892
|
[35]
|
Nomura, K., Liu, J., Fujiki, M. and Takemoto, A. (2007) Facile, Efficient Functionalization of Polyolefins via Controlled Incorporation of Terminal Olefins by Repeated 1,7-Octadiene Insertion. Journal of the American Chemical Society, 129, 14170-14171. http://dx.doi.org/10.1021/ja076633w
|
[36]
|
Naga, N., Shiono, T. and Ikeda, T. (1999) Cyclopolymerization of 1,7-Octadiene with Metallocene/Methylaluminox- ane. Macromolecular Chemistry and Physics, 200, 1466-1472. http://dx.doi.org/10.1002/(SICI)1521-3935(19990601)200:6<1466::AID-MACP1466>3.0.CO;2-N
|
[37]
|
Apisuk, W. and Nomura, K. (2014) Efficient Terpolymerization of Ethylene and Styrene with 1,7-Octadiene by Aryloxo Modified Half-Titanocenes-Cocatalyst Systems: Efficient Introduction of the Reactive Functionality. Macromolecular Chemistry and Physics, Early View. http://dx.doi.org/10.1002/macp.201400143
|
[38]
|
Itagaki, K. and Nomura, K. (2009) Efficient Synthesis of Functionalized Polyolefin by Incorporation of 4-Vinylcyclo-hexene in Ethylene Copolymerization Using Half-Titanocene Catalysts. Macromolecules, 42, 5097-5103. http://dx.doi.org/10.1021/ma900732k
|
[39]
|
Nomura, K. and Itagaki, K. (2005) Efficient Incorporation of Vinylcylohexane in Ethylene/Vinylcyclohexane Copolymerization Catalyzed by Nonbridged Half-Titanocenes. Macromolecules, 38, 8121-8123.
http://dx.doi.org/10.1021/ma051439k
|
[40]
|
Wang, W., Fujiki, M. and Nomura, K. (2005) Copolymerization of Ethylene with Cyclohexene (CHE) Catalyzed byNonbridged Half-Titanocenes Containing Aryloxo Ligand: Notable Effect of Both Cyclopentadienyl and Anionic Donor Ligand for Efficient CHE Incorporation. Journal of the American Chemical Society, 127, 4582-4583. http://dx.doi.org/10.1021/ja050274s
|
[41]
|
Apisuk, W., Kitiyanan, B., Kim, H.J., Kim, D.H. and Nomura, K. (2013) Introduction of Reactive Functionality by the Incorporation of Divinylbiphenyl in Ethylene Copolymerization with Styrene or 1-Hexene Using Aryloxo-Modified Half-Titanocenes and MAO Catalysts. Journal of Polymer Science Part A: Polymer Chemistry, 51, 2581-2587. http://dx.doi.org/10.1002/pola.26639
|
[42]
|
Chung, T.C. and Dong, J.Y. (2001) A Novel Consecutive Chain Transfer Reaction to p-Methylstyrene and Hydrogen during Metallocene-Mediated Olefin Polymerization. Journal of the American Chemical Society, 123, 4871-4876. http://dx.doi.org/10.1021/ja0039280
|
[43]
|
Caporaso, L., Iudici, N. and Oliva, L. (2006) A Novel Route to Graft-Copolymers with Tailored Structures for the Compatibilization of Polymeric Blend. Macromolecular Symposia, 234, 42-50. http://dx.doi.org/10.1002/masy.200650207
|
[44]
|
Apisuk, W., Suzuki, N., Kim, H.J., Kim, D.H., Kitiyanan, B. and Nomura, K. (2013) Efficient Terpolymerization of Ethylene and Styrene with α-Olefins by Aryloxo-Modified Half-Titanocene-Based Catalysts and Cocatalyst Systems. Journal of Polymer Science Part A: Polymer Chemistry, 51, 2565-2574. http://dx.doi.org/10.1002/pola.26637
|
[45]
|
Liu, J. and Nomura, K. (2008) Efficient Functional Group Introduction into Polyolefins by Copolymerization of Ethylene with Allyltrialkylsilane Using Nonbridged Half-Titanocenes. Macromolecules, 41, 1070-1072. http://dx.doi.org/10.1021/ma800031h
|
[46]
|
Byun, D.J., Shin, S.M., Han, C.J. and Kim, S.Y. (1999) Chain Transfer Reaction in Metallocene Catalyzed Ethylene Copolymerization with Allyltrimethylsilane. Polymer Bulletin, 43, 333-340. http://dx.doi.org/10.1007/s002890050619
|
[47]
|
Stoebenau III, E.J. and Jordan, R.J. (2006) Nonchelated d0 Zirconium-Alkoxide-Alkene Complexes. Journal of the American Chemical Society, 128, 8162-8175. http://dx.doi.org/10.1021/ja0575225
|
[48]
|
Nomura, K., Kakinuki, K., Fujiki, M. and Itagaki, K. (2008) Direct Precise Functional Group Introduction into Polyolefins: Efficient Incorporation of Vinyltrialkylsilanes in Ethylene Copolymerizations by Nonbridged Half-Ttitanocenes. Macromolecules, 41, 8974-8976. http://dx.doi.org/10.1021/ma8020757
|
[49]
|
Kakinuki, K., Fujiki, M. and Nomura, K. (2009) Copolymerization of Ethylene with α-Olefins Containing Various Substituents Catalyzed by Half-Ttitanocenes: Factors Affecting the Monomer Reactivities. Macromolecules, 42, 4585-4595. http://dx.doi.org/10.1021/ma900576v
|