A Greener Approach for Synthesis of Functionalized Polyolefins by Introducing Reactive Functionality into Ethylene Copolymers


Recent successful examples for synthesis of new polyolefins containing (polar) functionalities by adopting the approaches by controlled incorporation of reactive functionalities (and the subsequent introduction of polar functionalities under mild conditions) by coordination polymerization in the presence of transition metal complex catalysts have been described. Related methods (such as direct copolymerization of olefin with polar monomer using living radical or coordination insertion methods) have also been demonstrated for comparison. Our recent efforts for precise synthesis of polyolefins containing polar functionalities by efficient incorporation of reactive functionality by copolymerization of ethylene with nonconjugateddiene (1,7-octadiene, vinylcyclohexene etc.) or divinyl-biphenyl using nonbridged half-titanocene [ex. Cp’TiCl2(O-2,6-iPr2C6H3), Cp’ = C5Me5, tBuC5H4 etc.] catalysts have been introduced.

Share and Cite:

Apisuk, W. , Tsutsumi, K. , Joon Kim, H. , Hyun Kim, D. and Nomura, K. (2014) A Greener Approach for Synthesis of Functionalized Polyolefins by Introducing Reactive Functionality into Ethylene Copolymers. Green and Sustainable Chemistry, 4, 133-143. doi: 10.4236/gsc.2014.43018.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Mason, A.F. and Coates, G.W. (2007) Coordination Polymerization: Synthesis of New Homo- and Copolymer Architectures from Ethylene and Propylene Using Homogeneous Ziegler-Natt Polymerization Catalysts. In: Matyjaszewski, K., Gnanou, Y. and Leibler L., Eds., Macromolecular Engineering, Wiley-VCH, Weinheim, 1, 217-248.
[2] Brintzinger, H.H., Fischer, D., Mülhaupt, R., Rieger, B. and Waymouth, R.M. (1995) Stereospecific Olefin Polymerization with Chiral Metallocene Catalysts. Angewandte Chemie International Edition in English, 34, 1143-1170.
[3] Kaminsky, W. (1996) New Polymers by Metallocene Catalysis. Macromolecular Chemistry and Physics, 197, 3907-3945. http://dx.doi.org/10.1002/macp.1996.021971201
[4] Kaminsky, W. and Arndt, M. (1997) Metallocenes for Polymer Catalysis. Advances in Polymer Science, 127, 143-187.
[5] Suhm, J., Heinemann, J., Worner, C., Müller, P., Stricker, F., Kressler, J., Okuda, J. and Mülhaupt, R. (1998) Novel Polyolefin Materials via Catalysis and Reactive Processing. Macromolecular Symposia, 129, 1-28.
[6] McKnight, A.L. and Waymouth, R.M. (1998) Group 4 ansa-Cyclopentadienyl-Amido Catalysts for Olefin Polymerization. Chemical Reviews, 98, 2587-2598. http://dx.doi.org/10.1021/cr940442r
[7] Britovsek, G.J.P., Gibson, V.C. and Wass, D.F. (1999) TheSearch for New-Generation Olefin Polymerization Catalysts: Life beyond Metallocenes. Angewandte Chemie International Edition in English, 38, 428-447.
[8] Gibson, V.C. and Spitzmesser, S.K. (2003) Advances in Non-Metallocene Olefin Polymerization Catalysis. Chemical Reviews, 103, 283-316. http://dx.doi.org/10.1021/cr980461r
[9] Bolton, P.D. and Mountford, P. (2005) Transition Metal Imido Compounds as Ziegler-Natta Olefin Polymerisation Catalysts. Advanced Synthesis & Catalysis, 347, 355-366.
[10] Gladysz, J. A. (Ed.) (2000) Frontiers in Metal-Catalyzed Polymerization. Chemical Reviews, 100, 1167-1682.
[11] Guan, Z. (Ed.) (2009) Metal Catalysts in Olefin Polymerization. Topics in Organometallic Chemistry, 26, 3-251.
[12] Nomura, K., Liu, J., Padmanabhan, S. and Kitiyanan, B. (2007) Nonbridged Half-Metallocenes Containing Anionic Ancillary Donor Ligands: New Promising Candidates as Catalysts for Precise Olefin Polymerization. Journal of Molecular Catalysis A: Chemical, 267, 1-29.
[13] Nomura, K. (2009) Half-Titanocenes Containing Anionic Ancillary Donor Ligands as Promising New Catalysts for Precise Olefin Polymerization. Dalton Transactions, 41, 8811-8823.
[14] Nomura, K. and Liu, J. (2011) Half-Titanocenes for Precise Olefin Polymerisation: Effects of Ligand Substituents and Some Mechanistic Aspects. Dalton Transactions, 40, 7666-7682.
[15] Schellenberg, J. (Ed.) (2010) Syndiotactic Polystyrene—Synthesis, Characterization, Processing, and Applications. Wiley-VCH, Hoboken.
[16] Tomotsu, N., Ishihara, N., Newman, T.H. and Malanga, M.T. (1998) Syndiospecific Polymerization of Styrene. Journal of Molecular Catalysis A: Chemical, 128, 167-190. http://dx.doi.org/10.1016/S1381-1169(97)00171-4
[17] Schellenberg, J. (2009) Recent Transition Metal Catalysts for Syndiotactic Polystyrene. Progress in Polymer Science, 34, 688-718. http://dx.doi.org/10.1016/j.progpolymsci.2009.04.002
[18] Nomura, K. (2010) Syndiotactic Polystyrene: Synthesis, Characterization, Processing, and Applications. Wiley-VCH, Hoboken, 60-91.
[19] Nomura, K. (2011) Syndiospecific Styrene Polymerization and Ethylene/Styrene Copolymerization Using Half-Titanocenes: Ligand Effects and Some New Mechanistic Aspects. Catalysis Surveys from Asia, 14, 33-49.
[20] Chung, T.C. (2002) Functionalization of Polyolefins. Academic Press, San Diego.
[21] Boffa, L.S. and Novak, B.M. (2000) Copolymerization of Polar Monomers with Olefins Using Transition-Metal Complexes. Chemical Reviews, 100, 1479-1494. http://dx.doi.org/10.1021/cr990251u
[22] Chung, T.C. (2002) Synthesis of Functional Polyolefin Copolymers with Graft and Block Structures. Progress in Polymer Science, 27, 39-85. http://dx.doi.org/10.1016/S0079-6700(01)00038-7
[23] Chung, T.C. (2012) Functionalization of Polypropylene with High Dielectric Properties: Applications in Electric Energy Storage. Green and Sustainable Chemistry, 2, 29-37.
[24] Boaen, N.K. and Hillmyer, M.A. (2005) Post-Polymerization Functionalization of Polyolefins. Chemical Society Reviews, 34, 267-275. http://dx.doi.org/10.1039/B311405H
[25] Nakamura, A., Ito, S. and Nozaki, K. (2009) Coordination-Insertion Copolymerization of Fundamental Polar Monomers. Chemical Reviews, 109, 5215-5244. http://dx.doi.org/10.1021/cr900079r
[26] Nakamura, A., Anselment, T.M.J., Claverie, J., Goodall, B., Jordan, R.F., Mecking, S., Rieger, B., Sen, A., van Leeuwen, P.W.N.M. and Nozaki, K. (2013) Ortho-Phosphinobenzenesulfonate: A Superb Ligand for Palladium-Catalyzed Coordination-Insertion Copolymerization of Polar Vinyl Monomers. Account of Chemical Research, 46, 1438-1449.
[27] Doak, K.W. (1986) Low Density Polyethylene (High Pressure). In: Mark, H.F., Ed., Encyclopedia of Polymer Science and Engineering, John Wiley & Sons, New York, 6, 386-429.
[28] Moad, G. (1999) The Synthesis of Polyolefin Graft Copolymers by Reactive Extrusion. Progress in Polymer Science, 24, 81-142. http://dx.doi.org/10.1016/S0079-6700(98)00017-3
[29] Nomura, K. and Kitiyanan, B. (2008) Recent Progress in Precise Synthesis of Polyolefins Containing Polar Functionalities by Transition Metal Catalysis. Current Organic Synthesis, 5, 217-226.
[30] Nomura, K. (2010) New Approaches in Precise Synthesis of Polyolefins Containing Polar Functionalities by OlefinCopolymerizations Using Transition Metal Catalysts. Journal of Synthetic Organic Chemistry, Japan, 68, 1150-1158.
[31] Chung, T.C., Lu, H.L. and Li, C.L. (1994) Synthesis and Functionalization of Unsaturated Polyethylene: Poly(ethy-lene-co-1,4-hexadiene). Macromolecules, 27, 7533-7537.
[32] Itagaki, K., Fujiki, M. and Nomura, K. (2007) Effect of Cyclopenta Dienyl and Anionic Donor Ligands on Monomer Reactivities in Copolymerization of Ethylene with 2-Methyl-1-pentene by Nonbridged Half-Titanocenes-Cocatalyst Systems. Macromolecules, 40, 6489-6499. http://dx.doi.org/10.1021/ma0700429
[33] Nomura, K., Hatanaka, Y., Okumura, H., Fujiki, M. and Hasegawa, K. (2004) Polymerization of 1,5-Hexadiene by the Nonbridged Half-Titanocene Complex-MAO Catalyst System: Remarkable Difference in the Selectivity of Repeated 1,2-Insertion. Macromolecules, 37, 1693-1695.
[34] Nomura, K., Takemoto, A., Hatanaka, Y., Okumura, H., Fujiki, M. and Hasegawa, K. (2006) Polymerization of 1,5-Hexadiene by Half-Titanocenes-MAO Catalyst Systems: Factors Affecting the Selectivity for the Favored Repeated 1,2-Insertion. Macromolecules, 39, 4009-4017.
[35] Nomura, K., Liu, J., Fujiki, M. and Takemoto, A. (2007) Facile, Efficient Functionalization of Polyolefins via Controlled Incorporation of Terminal Olefins by Repeated 1,7-Octadiene Insertion. Journal of the American Chemical Society, 129, 14170-14171. http://dx.doi.org/10.1021/ja076633w
[36] Naga, N., Shiono, T. and Ikeda, T. (1999) Cyclopolymerization of 1,7-Octadiene with Metallocene/Methylaluminox- ane. Macromolecular Chemistry and Physics, 200, 1466-1472.
[37] Apisuk, W. and Nomura, K. (2014) Efficient Terpolymerization of Ethylene and Styrene with 1,7-Octadiene by Aryloxo Modified Half-Titanocenes-Cocatalyst Systems: Efficient Introduction of the Reactive Functionality. Macromolecular Chemistry and Physics, Early View.
[38] Itagaki, K. and Nomura, K. (2009) Efficient Synthesis of Functionalized Polyolefin by Incorporation of 4-Vinylcyclo-hexene in Ethylene Copolymerization Using Half-Titanocene Catalysts. Macromolecules, 42, 5097-5103.
[39] Nomura, K. and Itagaki, K. (2005) Efficient Incorporation of Vinylcylohexane in Ethylene/Vinylcyclohexane Copolymerization Catalyzed by Nonbridged Half-Titanocenes. Macromolecules, 38, 8121-8123.
[40] Wang, W., Fujiki, M. and Nomura, K. (2005) Copolymerization of Ethylene with Cyclohexene (CHE) Catalyzed byNonbridged Half-Titanocenes Containing Aryloxo Ligand: Notable Effect of Both Cyclopentadienyl and Anionic Donor Ligand for Efficient CHE Incorporation. Journal of the American Chemical Society, 127, 4582-4583.
[41] Apisuk, W., Kitiyanan, B., Kim, H.J., Kim, D.H. and Nomura, K. (2013) Introduction of Reactive Functionality by the Incorporation of Divinylbiphenyl in Ethylene Copolymerization with Styrene or 1-Hexene Using Aryloxo-Modified Half-Titanocenes and MAO Catalysts. Journal of Polymer Science Part A: Polymer Chemistry, 51, 2581-2587.
[42] Chung, T.C. and Dong, J.Y. (2001) A Novel Consecutive Chain Transfer Reaction to p-Methylstyrene and Hydrogen during Metallocene-Mediated Olefin Polymerization. Journal of the American Chemical Society, 123, 4871-4876.
[43] Caporaso, L., Iudici, N. and Oliva, L. (2006) A Novel Route to Graft-Copolymers with Tailored Structures for the Compatibilization of Polymeric Blend. Macromolecular Symposia, 234, 42-50.
[44] Apisuk, W., Suzuki, N., Kim, H.J., Kim, D.H., Kitiyanan, B. and Nomura, K. (2013) Efficient Terpolymerization of Ethylene and Styrene with α-Olefins by Aryloxo-Modified Half-Titanocene-Based Catalysts and Cocatalyst Systems. Journal of Polymer Science Part A: Polymer Chemistry, 51, 2565-2574. http://dx.doi.org/10.1002/pola.26637
[45] Liu, J. and Nomura, K. (2008) Efficient Functional Group Introduction into Polyolefins by Copolymerization of Ethylene with Allyltrialkylsilane Using Nonbridged Half-Titanocenes. Macromolecules, 41, 1070-1072.
[46] Byun, D.J., Shin, S.M., Han, C.J. and Kim, S.Y. (1999) Chain Transfer Reaction in Metallocene Catalyzed Ethylene Copolymerization with Allyltrimethylsilane. Polymer Bulletin, 43, 333-340.
[47] Stoebenau III, E.J. and Jordan, R.J. (2006) Nonchelated d0 Zirconium-Alkoxide-Alkene Complexes. Journal of the American Chemical Society, 128, 8162-8175. http://dx.doi.org/10.1021/ja0575225
[48] Nomura, K., Kakinuki, K., Fujiki, M. and Itagaki, K. (2008) Direct Precise Functional Group Introduction into Polyolefins: Efficient Incorporation of Vinyltrialkylsilanes in Ethylene Copolymerizations by Nonbridged Half-Ttitanocenes. Macromolecules, 41, 8974-8976. http://dx.doi.org/10.1021/ma8020757
[49] Kakinuki, K., Fujiki, M. and Nomura, K. (2009) Copolymerization of Ethylene with α-Olefins Containing Various Substituents Catalyzed by Half-Ttitanocenes: Factors Affecting the Monomer Reactivities. Macromolecules, 42, 4585-4595. http://dx.doi.org/10.1021/ma900576v

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.