Share This Article:

Lighting by Biogas Burners: Perspectives on Development in Brazil

Abstract Full-Text HTML XML Download Download as PDF (Size:2602KB) PP. 660-673
DOI: 10.4236/msa.2014.59068    2,683 Downloads   3,182 Views   Citations

ABSTRACT

The development of efficient components to save energy plays an important role in designing of sustainable solutions. Based on the concept of green energy, gas burners based on porous ceramic structures are interesting technologies to supply heat and lighting by burning even low calorific fuels as biogas. In this work, perspectives on development of porous ceramic burners in Brazil are presented. For this study a mixture of rare earth oxides―yttria (YTR) was selected as raw material, considering the unique luminescence proprieties of rare earth elements. Ceramic nettings with homogeneous morphology were produced by colloidal processing of rare earth powders. The results highlighted the potentiality of these components to be applied as biogas burners.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Santos, S. , Yamagata, C. and Mello-Castanho, S. (2014) Lighting by Biogas Burners: Perspectives on Development in Brazil. Materials Sciences and Applications, 5, 660-673. doi: 10.4236/msa.2014.59068.

References

[1] Agency, I.E. (2009) Energy Poverty. How to Make Modern Energy Access Universal? International Energy Agency (I.E.A), New York.
http://www.se4all.org/wp-content/uploads/2013/09/Special_Excerpt_of_WEO_2010.pdf
[2] Agency, I.E. (2009) Cities, Towns and Renewable Energy. International Energy Agency (I.E.A), Paris.
http://www.iea.org/publications/freepublications/publication/Cities2009.pdf
[3] Ministerial, M.E. (2004) PROINFA: Brazilian Program to Universalize the Access of Energy by Stimulating the Use of Renewable Sources from Modern Biomass. Brazil.
http://www.mme.gov.br/programas/proinfa/galerias/arquivos/apresentacao/politica_publica.pdf
[4] Cetesb, C.E.S.T. (2006) Biogas—Research and Projects in Brazil.
http://www.cetesb.sp.gov.br/biogas/memoria-dos-eventos/135-downloads---biogas:-pesquisas-e-projetos-no-brasil
[5] Walsh, J.L., Ross, C.C., Smith, M.S. and Harper, S.R. (1989) Utilization of Biogas. Biomass, 20, 277-290.
http://dx.doi.org/10.1016/0144-4565(89)90067-X
[6] Bruni, E., Jensen, A.P. and Angelidaki, I. (2010) Comparative Study of Mechanical, Hydrothermal, Chemical and Enzymatic Treatments of Digested Biofibers to Improve Biogas Production. Bioresource Technology, 101, 8713-8717.
http://dx.doi.org/10.1016/j.biortech.2010.06.108
[7] Bruno, J.C., Ortega-lópez, V. and Coronas, A. (2009) Integration of Absorption Cooling Systems into Micro Gas Turbine Trigeneration Systems Using Biogas: Case Study of a Sewage Treatment Plant. Applied Energy, 86, 837-847.
http://dx.doi.org/10.1016/j.apenergy.2008.08.007
[8] El-Mashad, H.M. and Zhang, R. (2010) Biogas Production from Co-Digestion of Dairy Manure and Food Waste. Bioresource Technology, 101, 4021-4028.
http://dx.doi.org/10.1016/j.biortech.2010.01.027
[9] Hilkiah Igoni, A., Ayotamuno, M. J., Eze, C. L., Ogaji, S.O.T. and Probert, S.D. (2008) Designs of Anaerobic Digesters for Producing Biogas from Municipal Solid-Waste. Applied Energy, 85, 430-438.
http://dx.doi.org/10.1016/j.apenergy.2007.07.013
[10] Harasimowicz, M., Orluk, P., Zakrzewska-Trznadel, G. and Chmielewski, A.G. (2007) Application of Polyimide Membranes for Biogas Purification and Enrichment. Journal of Hazardous Materials, 144, 698-702.
http://dx.doi.org/10.1016/j.jhazmat.2007.01.098
[11] Lau, C.S., Tsolakis, A. and Wyszynski, M.L. (2011) Biogas Upgrade to Syn-Gas (H2-CO) via Dry and Oxidative Reforming. International Journal of Hydrogen Energy, 36, 397-404.
http://dx.doi.org/10.1016/j.ijhydene.2010.09.086
[12] Makaruk, A., Miltner, M. and Harasek, M. (2010) Membrane Biogas Upgrading Processes for the Production of Natural Gas Substitute. Separation and Purification Technology, 74, 83-92.
http://dx.doi.org/10.1016/j.seppur.2010.05.010
[13] Poschl, M., Ward, S. and Owende, P. (2010) Evaluation of Energy Efficiency of Various Biogas Production and Utilization Pathways. Applied Energy, 87, 3305-3321.
http://dx.doi.org/10.1016/j.apenergy.2010.05.011
[14] Tippayawong, N. and Thanompongchart, P. (2010) Biogas Quality Upgrade by Simultaneous Removal of CO2 and H2S in a Packed Column Reactor. Energy, 35, 4531-4535.
http://dx.doi.org/10.1016/j.energy.2010.04.014
[15] Goldemberg, J. (2006) The Promise of Clean Energy. Energy Policy, 34, 2185-2190.
http://dx.doi.org/10.1016/j.enpol.2005.03.009
[16] Goldemberg, J. and Coelho, S.T. (2004) Renewable Energy—Traditional Biomass vs. Modern Biomass. Energy Policy, 32, 711-714.
http://dx.doi.org/10.1016/S0301-4215(02)00340-3
[17] Mohamad, A.A. (2005) Combustion in Porous Media: Fundamentals and Applications. In: Ingham and Pop, Eds., Transport Phenomena in Porous Media III, Pergamon, Oxford, 287-304.
[18] Agency, I.E.A. (2010) Renewables Global Status Report. International Energy Agency, New York.
http://www.ren21.net/Portals/0/documents/activities/gsr/REN21_GSR_2010_full_revised%20Sept2010.pdf
[19] Agency, I.E. (2013) Clean Energy Progress Report. IEA Input to the Clean Energy Ministerial. International Energy Agency (I.E.A), New York.
www.iea.org/publications/tcep_web.pdf
[20] Coelho, S.T. (2010) Waste Rote. Brazilian Bio-Energy Magazine, 55.
[21] Vafai, K. (2005) Handbook of Porous Media. Taylor & Francis, London.
http://dx.doi.org/10.1201/9780415876384
[22] Kotani, Y., Behbahani, H.F. and Takeno, T. (1985) An Excess Enthalpy Flame Combustor for Extended Flow Ranges. Symposium (International) on Combustion, 20, 2025-2033.
[23] Kotani, Y. and Takeno, T. (1982) An Experimental Study on Stability and Combustion Characteristics of an Excess Enthalpy Flame. Symposium (International) on Combustion, 19, 1503-1509.
[24] Mujeebu, M.A., Abdullah, M.Z., Bakar, M. Z. A., Mohamad, A.A. and Abdullah, M.K. (2009) Applications of Porous media Combustion Technology—A Review. Applied Energy, 86, 1365-1375.
http://dx.doi.org/10.1016/j.apenergy.2009.01.017
[25] CENBIO (2011) CENBIO, Centro Nacional de Referência em Biomassa.
http://cenbio.iee.usp.br/
[26] Wood, S. and Harris, A.T. (2008) Porous Burners for Lean-Burn Applications. Progress in Energy and Combustion Science, 34, 667-684.
http://dx.doi.org/10.1016/j.pecs.2008.04.003
[27] Shan, Z.F., Chen, D.Q., Yu, Y.L., Huang, P., Lin, H. and Wang, Y.S. (2010) Luminescence in Rare Earth-Doped Transparent Glass Ceramics Containing GdF3 Nanocrystals for Lighting Applications. Journal of Materials Science, 45, 2775-2779.
http://dx.doi.org/10.1007/s10853-010-4266-1
[28] Zorenko, Y., Mares, J.A., Kucerkova, R., Gorbenko, V., Savchyn, V., Voznyak, T., Nikl, M., Beitlerova, A. and Jurek, K. (2009) Optical, Luminescence and Scintillation Characteristics of Bi-Doped LuAG and YAG Single Crystalline Films. Journal of Physics D: Applied Physics, 42, 075501.
http://dx.doi.org/10.1088/0022-3727/42/7/075501
[29] Wang, W.N., Widiyastuti, W., Ogi, T., Lenggoro, W. and Okuyama, K. (2007) Correlations between Crystallite/Particle Size and Photoluminescence Properties of Submicrometer Phosphors. Chemistry of Materials, 19, 17231730.
http://dx.doi.org/10.1021/cm062887p
[30] Narisada, K. and Kanaya, S. (1999) Phosphor Handbook. CRC, New York.
[31] Studart, A.R., Gonzenbach, U.T., Tervoort, E. and Gauckler, L.J. (2006) Processing Routes to Macroporous Ceramics: A Review. Journal of the American Ceramic Society, 89, 1771-1789.
http://dx.doi.org/10.1111/j.1551-2916.2006.01044.x
[32] Mewis, J. and Wagner, N.J. (2009) Thixotropy. Advances in Colloid and Interface Science, 147-148, 214-227.
http://dx.doi.org/10.1016/j.cis.2008.09.005
[33] Starov, V.M. and Zhdanov, V.G. (2008) Effective Properties of Suspensions/Emulsions, Porous and Composite Materials. Advances in Colloid and Interface Science, 137, 2-19.
http://dx.doi.org/10.1016/j.cis.2006.11.025
[34] Lewis, J.A. (2000) Colloidal Processing of Ceramics. Journal of the American Ceramic Society, 83, 2341-2359.
http://dx.doi.org/10.1111/j.1151-2916.2000.tb01560.x
[35] Schwab, K. (2010) The Global Competitiveness Report 2010-2011. In: The Global Competitiveness Report, World Economic Forum, Cologny, 34.
[36] Fu, Y.P., Liu, Y.C. and Hu, S.H. (2009) Aqueous Tape Casting and Crystallization Behavior of Gadolinium-Doped Ceria. Ceramics International, 35, 3153-3159.
http://dx.doi.org/10.1016/j.ceramint.2009.05.002
[37] Dulina, N.A., Deineka, T.G., Yavetskiy, R.P., Sergienko, Z.P., Doroshenko, A.G., Mateychenko, P.V., Vovk, O.M. and Matveevskaya, N.A. (2011) Comparison of Dispersants Performance on the Suspension Lu2O3:Eu3+ Stability and High-Density Compacts on Their Basis. Ceramics International, 37, 1645-1651.
http://dx.doi.org/10.1016/j.ceramint.2011.01.042
[38] Santos, D.R.S., Santos, C.N., de Camargo, A.S.S., Silva, W.F., Santos, W.Q., Vermelho, M.V.D., Astrath, N.G.C., Malacarne, L.C., Li, M.S., Hernandes, A.C., Ibanez, A. and Jacinto, C. (2011) Thermo-Optical Characteristics and Concentration Quenching Effects in Nd3+ Doped Yttrium Calcium Borate Glasses. The Journal of Chemical Physics, 134, 124503-124507.
http://dx.doi.org/10.1063/1.3567091
[39] Santos, S.C., Acchar, W., Yamagata, C. and Mello-Castanho, S. (2014) Yttria Nettings by Colloidal Processing. Journal of the European Ceramic Society, 34, 2509-2517.
http://dx.doi.org/10.1016/j.jeurceramsoc.2014.03.006
[40] Deters, H., de Camargo, A.S.S., Santos, C.N., Ferrari, C.R., Hernandes, A.C., Ibanez, A., Rinke, M.T. and Eckert, H. (2009) Structural Characterization of Rare-Earth Doped Yttrium Aluminoborate Laser Glasses Using Solid State NMR. Journal of Physical Chemistry C, 113, 16216-16225.
http://dx.doi.org/10.1021/jp9032904
[41] Deters, H., de Lima, J.F., Magon, C.J., de Camargoac, A.S.S. and Eckert, H. (2011) Structural Models for Yttrium Aluminium Borate Laser Glasses: NMR and EPR Studies of the System (Y2O3)0.2-(Al2O3)x-(B2O3)0.8-x. Physical Chemistry Chemical Physics, 13, 16071-16083.
http://dx.doi.org/10.1039/c1cp21404g
[42] Moraes, A.P.A., Souza, A.G., Freire, P.T.C., Filho, J.M., M’Peko, J.C., Hernandes, A.C., Antonelli, E., Blair, M.W., Muenchausen, R.E., Jacobsohn, L.G. and Paraguassu, W. (2011) Structural and Optical Properties of Rare EarthDoped (Ba0.77Ca0.23)1-x(Sm, Nd, Pr, Yb)xTiO3. Journal of Applied Physics, 109, Article ID: 124102.
http://dx.doi.org/10.1063/1.3594710
[43] Santos, D.R.S., Santos, C.N., de Camargo, A.S.S., Silva, W.F., Santos, W.Q., Vermelho, M.V.D., Astrath, N.G.C., Malacarne, L.C., Li, M.S., Hernandes, A.C., Ibanez, A. and Jacinto, C. (2011) Thermo-Optical Characteristics and Concentration Quenching Effects in Nd3+doped Yttrium Calcium Borate Glasses. Journal of Chemical Physics, 134, Article ID: 124503.
http://dx.doi.org/10.1063/1.3567091
[44] Gouveia-Neto, A.S., Bueno, L.A., da Costa, E.B., Silva Jr., E.A., Ferrari, J.L., Lima, K.O. and Goncalves, R.R. (2010) Generation of Wide Color Gamut Visible Light in Rare-Earth Triply Doped Tantalum Oxide Crystalline Ceramic Powders. Journal of Applied Physics, 107, Article ID: 103539.
http://dx.doi.org/10.1063/1.3430998
[45] Elsevier (2013) Scopus.
http://www.scopus.com
[46] Sprycha, R., Jablonski, J. and Matijevic, E. (1991) Zeta Potential and Surface Charge of Monodispersed Colloidal Yttrium (III) Oxide and Basic Carbonate. Journal of Colloid and Interface Science, 149, 562-568.
[47] Illumination, I.C.O. (2001) Lighting of Work Places Part 1: Indoor. International Commission on illumination, Vienna.
[48] Standardization, I.O.F. (2002) Lighting for Work Places Part 1: Indoor (ISO: 8995-1: 2002 E). International Commission on illumination, Vienna.
[49] Moreno, R. (2005) Reología de suspensiones cerámicas. Consejo Superior de Investigaciones Científicas, Madrid.
[50] Yao, X.M., Tan, S.H., Huang, Z.R. and Jiang, D.L. (2006) Effect of Recoating Slurry Viscosity on the Properties of Reticulated Porous Silicon Carbide Ceramics. Ceramics International, 32, 137-142.
http://dx.doi.org/10.1016/j.ceramint.2005.01.008
[51] Luyten, J., Mullens, S., Cooymans, J., De Wilde, A.M., Thijs, I. and Kemps, R. (2009) Different Methods to Synthesize Ceramic Foams. Journal of the European Ceramic Society, 29, 829-832.
http://dx.doi.org/10.1016/j.jeurceramsoc.2008.07.039
[52] Paiva, A.E.M., Sepulveda, P. and Pandolfelli, V.C. (1999) Processing and Thermomechanical Evaluation of FibreReinforced Alumina Filters. Journal of Materials Science, 34, 2641-2649.
http://dx.doi.org/10.1023/A:1004613102358

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.