[1]
|
Mengel, K. (1994) Iron Availability in Plant Tissues-Iron Chlorosis in Calcareous Soils. Plant Soil, 165, 275-283. http://dx.doi.org/10.1007/BF00008070
|
[2]
|
Nedunchezhain, N., Morales, F., Abadia, A. and Abadia, J. (1997) Decline in Photosynthetic Electron Transport Activity and Changes in Thylakoid Protein Pattern in Field Grown Iron Deficient Peach (Prunus persica L.). Plant Science, 129, 29-38. http://dx.doi.org/10.1016/S0168-9452(97)00170-2
|
[3]
|
Donnini, S., Castagna, A., Guidi, L., Zocchi, G. and Ranieri, A. (2003) Leaf Responses to Reduced Iron Availability in Two Tomato Genotypes: T3238FER (Iron Efficient) and T3238fer (Iron Inefficient). Journal of Plant Nutrition, 26, 2137-2148. http://dx.doi.org/10.1081/PLN-120024270
|
[4]
|
Asada, K. (1999) The Water-Cycle in Chloroplasts: Scavenging of Active Oxygens and Dissipation of Excess Photons. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 601-639. http://dx.doi.org/10.1146/annurev.arplant.50.1.601
|
[5]
|
Azevedo Neto, A.D., Prisco, J.T., Enéas-Filho, J., E. Braga de Abreu, C. and Gomes-Filho, E. (2006) Effect of Salt Stress on Antioxidative Enzymes and Lipid Peroxidation in Leaves and Roots of Salt-Tolerant and Salt-Sensitive MAIZE genotypes. Environmental and Experimental Botany, 56, 87-94. http://dx.doi.org/10.1016/j.envexpbot.2005.01.008
|
[6]
|
Kubo, A., Saji, H., Tanaka, K. and Kondo, N. (1992) Cloning and Sequencing of a cDNA Encoding Ascorbate Peroxidase from Arabodopsis thaliana. Plant Molecular Biology, 18, 691-701. http://dx.doi.org/10.1007/BF00020011
|
[7]
|
Noctor, G. and Foyer, C. (1998) Ascorbate and Glutathione: Keeping Active Oxygen under Control. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 249-279.
|
[8]
|
M’sehli, W., Dell’Orto, M., De Nisi, P., Donnini, S., Abdelly, C., Zocchi, G and Gharsalli, M. (2009) Responses of Two Ecotypes of Medicago Ciliaris to Direct and Bicarbonate-Induced Iron Deficiency Conditions. Acta Physiologiae Plantarum, 31, 667-673. http://dx.doi.org/10.1007/s11738-009-0288-1
|
[9]
|
M’sehli, W., Dell’Orto, M., Donnini, S., De Nisi, P., Zocchi, G., Abdelly, C. and Gharsalli, M. (2009) Variability of Metabolic Responses and Antioxidant Defence in Two Lines of Medicago ciliaris to Fe Deficiency. Plant and Soil, 32, 219-230. http://dx.doi.org/10.1007/s11104-008-9887-7
|
[10]
|
M’sehli, W., Youssfi, S., Donnini, S., Dell’Orto, M., De Nisi, P., Abdelly, C. and Gharsalli, M. (2008) Root Exudation and Rhizosphere Acidification by Two Lines of Medicago ciliaris in Response to Lime-Induced Iron Deficiency. Plant and Soil, 312, 151-162. http://dx.doi.org/10.1007/s11104-008-9638-9
|
[11]
|
Oserkowsky, J. (1933) Quantitative Relation between Chlorophyll and Iron in Green and Chlorotic Leaves. Plant Physiology, 8, 449-468. http://dx.doi.org/10.1104/pp.8.3.449
|
[12]
|
Llorente, S., Leon, A., Torrecillas, A. and Alcaraz, C. (1976) Leaf Iron Fractions and Their Relation with Iron in Citrus. Agrochimica, 20, 205-212.
|
[13]
|
Torrecillas, A., Léon, A., Del Amor, F. and Martinez-Mompean, M.C. (1984) Rapid Determination of Chlorophyll. Fruits, 39, 617-622.
|
[14]
|
Ferraro, F., Castagna, A., Soldatini, G. and Ranieri, A. (2003) Influence of Different Iron Concentrations on Thylakoid Pigment and Protein Composition. Plant Science, 164, 783-792. http://dx.doi.org/10.1016/S0168-9452(03)00065-7
|
[15]
|
Hammami, S., Chaffai, R. and El Ferjani, E. (2004) Effect of Cadmium on Sunflower Growth, Leaf Pigment and Photosynthetic Enzymes. Pakistan Journal of Biological Sciences, 7, 1419-1426. http://dx.doi.org/10.3923/pjbs.2004.1419.1426
|
[16]
|
Jana, S. and Choudhuri, M.A. (1981) Glycolate Metabolism of Three Submerged Aquatic Angiosperms during Aging. Aquatic Botany, 12, 345-354. http://dx.doi.org/10.1016/0304-3770(82)90026-2
|
[17]
|
Peixoto, P.H.P., Cambraia, J., Sant’Anna, R., Mosquim, P.R. and Moreira, M.A. (1999) Aluminuim Effects on Lipid Peroxidation and on the Activities of Enzymes of Oxidative Metabolism in Sorghum. Revista Brasileira de Fisiologia Vegetal, 11, 137-143.
|
[18]
|
Cakmak, I. and Horst, J.H. (1991) Effects of Aluminium on Lipid Peroxidation, Superoxide Dismutase, Catalase, and Peroxidase Activities in Root Tips of Soybean (Glycine Max). Physiologia Plantarum, 83, 463-468. http://dx.doi.org/10.1111/j.1399-3054.1991.tb00121.x
|
[19]
|
Ranieri, A., D’Urso, G., Nali, G., Lorenzini, G. and Soldatini, G.F. (1996) Ozone Stimulates Apoplastic Systems in Pumkin Leaves. Plant Physiology, 97, 381-387.
|
[20]
|
Donahue, J.L., Okpodu, C.M., Cramer, C.L., Grabau, E.A. and Alscher, R.G. (1997) Responses of Antioxidants to Paraquat in Pea Leaves. Plant Physiology, 113, 249-257.
|
[21]
|
Griffith, O.W. (1980) Determination of Glutathione Disulphide Using Glutathione Reductase in Leaves of Pea (Pisum sativum L.). Planta, 180, 278-284.
|
[22]
|
Miyake, C. and Asada, K. (1992) Thylakoid-Bound Ascorbate Peroxidase in Spinach Chloroplasts and Photoreduction of Its Primary Oxidation Product Monodehydroascorbate Radicals in Thylakoids. Plant and Cell Physiology, 33, 541-553.
|
[23]
|
Benzie, I.E.F. and Strain, J.J. (1996) The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry, 239, 70-76. http://dx.doi.org/10.1006/abio.1996.0292
|
[24]
|
Rosales, M.A., Ruiz, J.M., Hernández, J., Soriano, T., Castilla, N. and Romero, L. (2006) Antioxidant Content and Ascorbate Metabolism in Cherry Tomato Exocarp in Relation to Temperature and Solar Radiation. Journal of the Science of Food and Agriculture, 86, 1545-1551. http://dx.doi.org/10.1002/jsfa.2546
|
[25]
|
Kampfenkel, K., Vanmontagu, M. and Inze, D. (1995) Extraction and Determination of Ascorbate and Dehydroascorbate from Plant Tissue. Analytical Biochemistry, 255, 165-167. http://dx.doi.org/10.1006/abio.1995.1127
|
[26]
|
Donnini, S., Castagna, A., Ranieri, A. and Zocchi, G. (2009) Differential Responses in Pear and Quince Genotypes Induced by Fe Deficiency and Bicarbonate. Journal of Plant Physiology, 166, 1181-1193. http://dx.doi.org/10.1016/j.jplph.2009.01.007
|
[27]
|
Longenberger, P.S., Smith, C.W., Duke, S.E. and McMichael, B.L. (2009) Evaluation of Chlorophyll Fluorescence as a Tool for the Identification of Drought Tolerance in Upland Cotton. Euphytica, 166, 25-33. http://dx.doi.org/10.1007/s10681-008-9820-4
|
[28]
|
Brestic, M. and Zivcak, M. (2013) PSII Fluorescence Techniques for Measurement of Drought and High Temperature Stress Signal in Crop Plants: Protocols and Applications. In: Rout, G.R. and Das, A.B., Eds., Molecular Stress Physiology of Plants, Springer India, New Delhi, 87-131.
|
[29]
|
Belkhodja, R., Morales, F., Quilez, R., Lopez-Millan, A.F., Abadia, A. and Abadia, J. (1998) Iron Deficiency Causes Changes in Chlorophyll Fluorescence Due to the Reduction in the Dark of the Photosystem II Acceptor Side. Photosynthesis Research, 25, 173-185.
|
[30]
|
Jelali, N., Salah, I.B., M’sehli, W., Donnini, S., Graziano, Z. and Gharsalli, M. (2011) Comparison of Tree Pea Cultivars (Pisum sativum) Regarding Their Responses to Direct and Bicarbonate-Induced Iron Deficiency. Scientia Horticulturae, 129, 548-553.
|
[31]
|
Pascal, N. and Douce, R. (1993) Effect of Iron Deficiency on the Respiration of Sycamore (Acer pseudoplatanus L.) Cells. Plant Physiology, 103, 1329-1338.
|
[32]
|
Yoshida, A., Rzhetsky, A., Hsu, L.C. and Chang, C. (1998) Human Aldehyde Dehydrogenase Gene Family. European Journal of Biochemistry, 251, 549-557.
|
[33]
|
Lindahl, R. (1992) Aldehyde Dehydrogenases and Their Role in Carcinogenesis. Critical Reviews in Biochemistry and Molecular Biology, 27, 283-335. http://dx.doi.org/10.3109/10409239209082565
|
[34]
|
Bartels, D. (2001) Targeting Detoxification Pathways: An Efficient Approach to Obtain Plants with Multiple Stress Tolerance? Trends in Plant Science, 6, 284-286. http://dx.doi.org/10.1016/S1360-1385(01)01983-5
|
[35]
|
Mittler, R. (2002) Oxidative Stress, Antioxidants and Stress Tolerance. Trends in Plant Science, 7, 405-410. http://dx.doi.org/10.1016/S1360-1385(02)02312-9
|
[36]
|
Del Río, L.A., Sevilla, F., Gómez, M., Yañez, J. and López-Gorge, J. (1978) Superoxide Dismutase: An Enzyme System for the Study of Micronutrient, Interactions in Plants. Planta, 140, 221-225. http://dx.doi.org/10.1007/BF00390251
|
[37]
|
Yu, Q. and Rengel, Z. (1999) Micronutrient Deficiency Influences Plant Growth and Activities of Superoxide Dismutases in Narrow-Leafed Lupins. Annals of Botany, 83, 175-182. http://dx.doi.org/10.1006/anbo.1998.0811
|
[38]
|
Randall, P. and Bouma, D. (1973) Zinc Deficiency, Carbonic Anhydrase, and Photosynthesis in Leaves of Spinach. Plant Physiology, 52, 229-232. http://dx.doi.org/10.1104/pp.52.3.229
|
[39]
|
Iturbe-Ormaetxe, I., Moran, F., Arrese-Igor, C., Gogorcena, Y., Klucas, R. and Becana, M. (1995) Activated Oxygen and Antioxidant Defences in Iron-Deficient Pea Plants. Plant, Cell & Environment, 18, 421-429. http://dx.doi.org/10.1111/j.1365-3040.1995.tb00376.x
|
[40]
|
Del Río, L.A., Sevilla, F., Sandalio, L. and Palma, J. (1991) Nutritional Effect and Expression of SODs: Induction and Gene Expression; Diagnostics; Prospective Protection against Oxygen Toxicity. Free Radical Research, 13, 819-827. http://dx.doi.org/10.3109/10715769109145863
|
[41]
|
Asada, K. and Takahashi, M. (1987) Photoinhibition Production and Scavenging of Activated Oxygen. In: Kyle, D.J, Osmond, C.B. and Arntzen, C.J., Eds., Photoinhibition, Elsevier Science Publishers, Amsterdam, 227-287.
|
[42]
|
Meneguzzo, S., Navari-Izzo, F. and Izzo, R. (1999) Antioxidative Responses of Shoots and Roots of Wheat to Increasing NaCl Concentrations. Journal of Plant Physiology, 155, 274-280. http://dx.doi.org/10.1016/S0176-1617(99)80019-4
|
[43]
|
Foyer, C.H., Lelandais, M. and Kunert, K.J. (1994) Photooxidative Stress in Plants. Physiologia Plantarum, 92, 696-717. http://dx.doi.org/10.1111/j.1399-3054.1994.tb03042.x
|
[44]
|
Smirnoff, N. and Pallanca, E. (1996) Ascorbate Metabolism in Relation to Oxidative Stress. Biochemical Society Transactions, 24, 472-478.
|