Chlorophyll Fluorescence as an Indicator of Cellular Damage by Glyphosate Herbicide in Raphanus sativus L. Plants

Abstract

The fodder radish is an important alternative late summer crop in central-western Brazil. The fodder radish has a short growing cycle, is highly productive and possesses qualities that enhance its cultivation potential as an alternative in Brazil’s Biodiesel Program. However, drift of herbicides, such as glyphosate, may hinder the development of fodder radishes. Studies of chlorophyll fluorescence can provide measurements that help assess the effect of herbicide, being good indicator of the damage to photosynthetic apparatus promoted by herbicide. This study was carried out to analyze the effects of glyphosate by measuring chlorophyll a fluorescence, cellular membrane stability and chloroplast pigment contents in fodder radish plants. This experiment used a randomized block design in which the treatments consisted of the following 6 different doses: control, 0, 150, 300, 450, 600, 750 and 900 g i.a. ha-1 of the recommended 480 g·L-1 dose of glyphosate acid equivalent. The plants were sprayed 30 days after emergence and were assessed every 48 hours. The characteristics evaluated, including chlorophyll a fluorescence, chloroplast pigments and the rate of electrolyte leakage, indicated that radish plants are sensitive to glyphosate because the treatments resulted in reduced levels of photosynthetic efficiency and increased damage to cellular membranes, which led to a reduction in the chloroplast pigment content.

Share and Cite:

Silva, F. , Costa, A. , Pereira Alves, R. and Megguer, C. (2014) Chlorophyll Fluorescence as an Indicator of Cellular Damage by Glyphosate Herbicide in Raphanus sativus L. Plants. American Journal of Plant Sciences, 5, 2509-2519. doi: 10.4236/ajps.2014.516265.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Sluszz, T. and Machado, J.A.D. (2012) Characteristics of Potential Raw Materials for Biodiesel Crops and Their Adoption by Family Farms, Agoner CD.
http://paginas.agr.unicamp.br/energia/agre2006/pdf/50.pdf
[2] Roscoe, R., Richetti, A. and Maranho, E. (2007) Analysis of Feasibility of Oilseeds for Biodiesel Production in Mato Grosso do Sul. Revista de Política Agrícola, 16, 48-59.
[3] Lima, J.D., Aldirghi, M., Sakai, R.K., Soliman, E. P. and Moraes, W.S. (2007) Comportamento do Nabo forrageiro (Raphanus sativus L.) e da Nabiça (Raphanus raphanis trum L.) como adubo verde. Pesquisa Agropecuária Tropical, 37, 60-63.
[4] Kojiro, O.I. (2010) Produção e Analises de Bio-óleo e biodiesel utilizando oleaginosas que possam contribuir para o aumento da matriz energética renovável brasileira. Dissertação de Mestrado. Master’s Thesis, Universidade de Brasília.
[5] Neto, A. M. O., Constantin, J., Oliveira Jr, R. S., Guerra, N., Braz, G.B.P., Vilela L.M.S., Botelho, L.V.P. and àvila, L.A. (2013) Sistemas de dessecação em áreas de trigo no inverno e atividade residual de herbicidas na soja. Revista Brasileira de Herbicidas, 12, 14-22.
http://dx.doi.org/10.7824/rbh.v12i1.190
[6] Wang, S., Wang, Z., Zhang, Z., Zhang, Y., Wang, J. and Guo, R. (2013) Pesticide Residues in Market Foods in Shaanxi Province of China in 2010. Food Chemistry, 138, 2016-2025. http://dx.doi.org/10.1016/j.foodchem.2012.11.116
[7] Warren, N., Allan, I.J., Carter, J.E., House, W.A. and Parker, A. (2003) Pesticides and Other Micro-Organic Contaminants in Freshwater Sedimentary Environments—A Review. Applied Geochemistry, 18, 159-194.
http://dx.doi.org/10.1016/S0883-2927(02)00159-2
[8] Van Dam, J.W., Negri, A.P., Uthicke, S. and Mueller, J.F. (2010) Chemical Pollution on Coral Reefs: Exposure and Ecological Effects. In: Sánchez-Bayo, F., van den Brink, P.J. and Mann, R.M. (Eds.), Ecological Impacts of Toxic Chemicals, Bentham Science Publishers Ltd., Chapter 10.
[9] Velini, E.D., Meschede, D.K., Carbonari, C.A. and Trindade, M.L.B. (2009) Glyphosate. 1st Edition, Fundação de Estudos e Pesquisas Agrícolas e Florestais, Botucatu, 496.
[10] Ortíz, C.E.R. (2010) Avaliação fisiológica de plantas de urucum (Bixao rellana L.). Doctoral Thesis, Universidade Federal de Viçosa
[11] Zhao, T.E., Lin, C. and Shen, Z. C. (2011) Development of Transgenic Glyphosate-Resistant Rice with G6 Gene Encoding 5-Enolpyruvylshikimate-3-Phosphate Synthase. Agricultural Sciences in China, 10, 1307-1312.
http://dx.doi.org/10.1016/S1671-2927(11)60123-5
[12] Moura, E.E.S. (2009) Determinação da toxicidade aguda e caracterização do risco ambiental do herbicida Roundup (glifosato) sobre três espécies de peixes. Universidade Federal do Rio Grande do Norte, Natal-RN, 45.
[13] Dayan, F.E. and Zaccaro, M.L.M. (2012) Chlorophyll Fluorescence as a Marker for Herbicide Mechanisms of Action. Pesticide Biochemistry and Physiology, 102, 189-197.
http://dx.doi.org/10.1016/j.pestbp.2012.01.005
[14] Baker, N.R. and Rosenqvist, E. (2004) Applications of Chlorophyll Fluorescence Can Improve Crop Production Strategies: An Examination of Future Possibilities. Journal of Experimental Botany, 55, 1607-1621.
http://dx.doi.org/10.1093/jxb/erh196
[15] Lichtenthaler, H.K., Babani, F., Navràtil, M. and Busvhman, N. (2013) Clorophyll Fluorescence Kinetics, Photosynthetic Activity, and Pigment Composition of Blue-Shade and Half-Shade Leaves as Compared to Sun and Shade Leaves of Different Trees. Photosynthesis Research, 117, 355-366.
[16] Schreiber, B.C. (1996) Measurement of Chlorophyll Fluorescence within Leaves Using a Modified PAM Fluorometer with a Fiber-Optic Microprobe. Photosynthesis Research, 47, 103-109.
http://dx.doi.org/10.1007/BF00017758
[17] Lichtenthaler, H.K., Buschmann, C. and Knapp, M. (2005) How to Correctly Determine the Different Chlorophyll Fluorescence Parameters and the Chlorophyll Fluorescence Decrease Ratio RFd of Leaves with the PAM Fluorometer. Photosynthetica, 43, 379-393.
http://dx.doi.org/10.1007/s11099-005-0062-6
[18] Silva, C.M.M., Gomes, M.M.A. and Freitas, S.P. (2009) Brasinosteroide, no aparato fotossintético de mudas de Eucalyptus grandis. Planta Daninha, 27, 789-797.
http://dx.doi.org/10.1590/S0100-83582009000400017
[19] Hoagland, D. and Arnond, I. (1950) The Water Culture Method for Growing Plants without Soil. California Agriculture Experimental Station Circular, 347.
[20] Van Kooten, O. and Snel, J.F.H. (1990) The Use of Chlorophyll Fluorescence Nomenclature in Plant Stress Physiology. Photosynthesis Research, 25, 147-150.
http://dx.doi.org/10.1007/BF00033156
[21] Genty, B., Briantais, J.M. and Baker, N.R. (1989) The Relationship between the Quantum Yield of Photosynthetic Electron Transport and Quenching of Chlorophyll Fluorescence. Biochimica et Biophysica Acta, 990, 87-92.
http://dx.doi.org/10.1016/S0304-4165(89)80016-9
[22] Bilger, W., Schreiber, U., Bock, M. (1995) Determination of the Quantum Efficiency of Photosystem II and of Non-Photochemical Quenching of Chlorophyll Fluorescence in the Field. Oecologia, 102, 425-432.
http://dx.doi.org/10.1007/BF00341354
[23] Laisk, A. and Loreto, F. (1996) Determining Photosynthetic Parameters from Leaf CO2 Exchange and Chlorophyll Fluorescence. Plant Physiology, 110, 903-912.
[24] Bilger, W. and Björkman, O. (1990) Role of Xanthophyll Cycle in Photoprotection Elucidated by Measurements of Light Induced Absorbance Changes, Fluorescence and Photosynthesis in Leaves of Hedera canariensis. Photosynthesis Research, 25, 173-185.
http://dx.doi.org/10.1007/BF00033159
[25] Wellburn, A.R. (1994) The Spectral Determination of Chlorophylls a and b, As Well As Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. Journal Plant Physiology, 144, 307-313.
http://dx.doi.org/10.1016/S0176-1617(11)81192-2
[26] Vasquez-Tello, A.Y., Zuily-Fodil, A.T., Pham, T.H.I. and Vieira Silva, J. (1990) Electrolyte and Pi Leakages and Soluble Sugar Content as Physiological Tests for Screening Resistance to Water Stress in Phaseolus and Vigna Species. Journal of Experimental Botany, 41, 827-832.
http://dx.doi.org/10.1093/jxb/41.7.827
[27] Pimentel, C., Sar, R.B., Diouf, O., Abboud, A.C.S. and Macauley, H.R. (2002) Tolerancia protoplasmática foliar à seca, em dois genótipos de caupi cultivados em campo. Revista Universidade Rural Série Ciências da Vida, 22, 7-14.
[28] Maxwell, K. and Johnson, G.N. (2000) Chlorophyll Fluorescence: A Practical Guide. Journal Experimental Botany, 51, 659-668. http://dx.doi.org/10.1093/jexbot/51.345.659
[29] Araldi, R., Girotto, M., Velini, E.D., Tropaldi, L, Silva, I.P.F. and Carbonari, C.A. (2011) Análises de fluorescência e consumo de água em Brachiaria decumbens post application de herbicidas em pós-emergência. Planta Daninha, 29, 1053-1060. http://dx.doi.org/10.1590/S0100-83582011000500012
[30] Rochaix, J. D. (2011) Regulation of Photosynthetic Electron Transport. Biochimica Biophysica Acta, 1807, 375–383.
http://dx.doi.org/10.1016/j.bbabio.2010.11.010
[31] Jahns, P. and Holzwarth, A.R. (2012). The Role of the Xanthophyll Cycle and of Lutein in Photoprotection of Photosystem II. Biochimica Biophysica Acta, 1817, 182-193.
http://dx.doi.org/10.1016/j.bbabio.2011.04.012
[32] Wakabayashi, N., Dinkova-Jostova, A.T., Holtzclaw, W.D., Kang, M., Kobayashi, A., Yamamoto, M., Kensler, T.W. and Talalay, P. (2004) Protection against Electrophile and Oxidant Stress by Induction of the Phase 2 Response: Fate of Cysteines of the Keap1 Sensor Modified by Inducers. Proceedings of the National Academy of Sciences, 101, 2040-2045.
http://dx.doi.org/10.1073/pnas.0307301101
[33] Shumskaya, M. and Wurtzel, E.T. (2013) The Carotenoid Biosynthetic Pathway: Thinking in All Dimensions. Plant Science, 208, 58-63.
http://dx.doi.org/10.1016/j.plantsci.2013.03.012
[34] Kirkwood, R.C., Hetherington, R., Reynolds, T.L. and Marshall, G. (2000) Absorption, Localization, Translocation and Activity of Glyphosate in Barnyardgrass (Echinochloa crusgalli (L) Beauv): Influence of Herbicide and Surfactant Concentration. Pesticide Management Science, 56, 359-367.
http://dx.doi.org/10.1002/(SICI)1526-4998(200004)56:4<359::AID-PS145>3.0.CO;2-S
[35] Monquero, P.A., Christoffoleti, P.J., Osuna, M.D. and De Prado, R.A. (2004) Absorção, translocação e metabolismo do glyphosate por plantas tolerantes e suscetíveis a este herbicida. Planta Daninha, 22, 445-451.
http://dx.doi.org/10.1590/S0100-83582004000300015
[36] Mateos-Naranjo, E. and Perez-Martin A. (2013) Effects of Sub-Lethal Glyphosate Concentrations on Growth and Photosynthetic Performance of Non-Target Species Bolboschoenus maritimus. Chemosphere, 93, 2631-2638.
http://dx.doi.org/10.1016/j.chemosphere.2013.09.094
[37] Hoagland, R.E. (1980) Effects of Glyphosate on the Metabolism of Phenolics Compounds: VI. Effects of Glyphosine and Glyphosate Metabolites on Phenylalanine Ammonia-Lyase Activity, Growth and Protein, Chlorophyll, and Anthocyanin Levels in Soybean (Glycine max) Seedlings. Weed Science, Champaing, 28, 393-400.
[38] Yamada, T. and Castro, P.R.C. (2007) Efeitos do glyphosate nas plantas: Implicações fisiológicas e agronômicas. Informações Agronômicas, Piracicaba, 119, 1-24.
[39] Marchiosi, R., Ferrarese, M.L.L., Bonini, E.A., Fernades, N.G., Ferro, A.P. and Ferrarese-Filho, O. (2009) Glyphosate-Induced Metabolic Changes in Susceptible and Glyphosate-Resistant Soybean (Glycine max L.) Roots. Pesticide Biochemistry and Physiology, 93, 28-33.
http://dx.doi.org/10.1016/j.pestbp.2008.09.003

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.