The Effects of Adiponectin on Bone Metabolism


Osteoporosis and its related bone fractures are growing medical problems, especially in industrial countries, and thus the knowledge of regulation of bone metabolism is critical to develop therapeutic approaches. Bone adipocytes share common mesenchymal precursors with osteoblasts and chondrocytes and their numbers in bone marrow are altered in various pathophysiological conditions. Several findings suggest that accelerated adipogenesis in bone marrow, known as fatty marrow, is associated with the progression of osteoporosis. Apart from its demonstrated anti-atherosclerogenic and insulin-sensitizing actions, the adipokine adiponectin and its receptors have been shown to be expressed in bone tissues and participate in bone metabolism. Here we review recent findings regarding the regulation of bone metabolism by adiponectin and its receptors and the underlying mechanisms. We also provide future perspectives for research.

Share and Cite:

Lin, Y. , Chen, C. , Chen, C. , Lin, H. , Mersmann, H. , Wu, S. and Ding, S. (2014) The Effects of Adiponectin on Bone Metabolism. Journal of Biomedical Science and Engineering, 7, 621-630. doi: 10.4236/jbise.2014.79062.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Meunier, P., Aaron, J., Edouard, C. and Vignon, G. (1971) Osteoporosis and the Replacement of Cell Populations of the Marrow by Adipose Tissue. A Quantitative Study of 84 Iliac Bone Biopsies. Clinical Orthopaedics and Related Research, 80, 147-154.
[2] Gimble, J.M., Zvonic, S., Floyd, Z.E., Kassem, M. and Nuttall, M.E. (2006) Playing with Bone and Fat. Journal of Cellular Biochemistry, 98, 251-266.
[3] Ahima, R.S. and Flier, J.S. (2000) Adipose Tissue as an Endocrine Organ. Trends in Endocrinology and Metabolism, 11, 327-332.
[4] Kershaw, E.E. and Flier, J.S. (2004) Adipose Tissue as an Endocrine Organ. The Journal of Clinical Endocrinology and Metabolism, 89, 2548-2556.
[5] Ducy, P., Amling, M., Takeda, S., Priemel, M., Schilling, A.F., Beil, F.T., et al. (2000) Leptin Inhibits Bone Formation through a Hypothalamic Relay: A Central Control of Bone Mass. Cell, 100, 197-207.
[6] Karsenty, G. (2006) Convergence between Bone and Energy Homeostases: Leptin Regulation of Bone Mass. Cell Metabolism, 4, 341-348.
[7] Yamauchi, T. and Kadowaki, T. (2008) Physiological and Pathophysiological Roles of Adiponectin and Adiponectin Receptors in the Integrated Regulation of Metabolic and Cardiovascular Diseases. International Journal of Obesity, 32, S13-18.
[8] Kelesidis, I., Kelesidis, T. and Mantzoros, C.S. (2006) Adiponectin and Cancer: A Systematic Review. British Journal of Cancer, 94, 1221-1225.
[9] Shinoda, Y., Yamaguchi, M., Ogata, N., Akune, T., Kubota, N., Yamauchi, T., et al. (2006) Regulation of Bone Formation by Adiponectin through Autocrine/Paracrine and Endocrine Pathways. Journal of Cellular Biochemistry, 99, 196-208.
[10] Berner, H.S., Lyngstadaas, S.P., Spahr, A., Monjo, M., Thommesen, L., Drevon, C.A., et al. (2004) Adiponectin and Its Receptors Are Expressed in Bone-Forming Cells. Bone, 35, 842-849.
[11] Scherer, P.E., Williams, S., Fogliano, M., Baldini, G. and Lodish, H.F. (1995) A Novel Serum Protein Similar to C1q, Produced Exclusively in Adipocytes. The Journal of Biological Chemistry, 270, 26746-26749.
[12] Hu, E., Liang, P. and Spiegelman, B.M. (1996) AdipoQ is a Novel Adipose-Specific Gene Dysregulated in Obesity. The Journal of Biological Chemistry, 271, 10697-10703.
[13] Maeda, K., Okubo, K., Shimomura, I., Funahashi, T., Matsuzawa, Y. and Matsubara, K. (1996) cDNA Cloning and Expression of a Novel Adipose Specific Collagen-Like Factor, apM1 (AdiPose Most abundant Gene Transcript 1). Biochemical and Biophysical Research Communications, 221, 286-289.
[14] Nakano, Y., Tobe, T., Choi-Miura, N., Mazda, T. and Tomita, M. (1996) Isolation and Characterization of GBP28, a Novel Gelatin-Binding Protein Purified from Human Plasma. Journal of Biochemistry, 120, 803-812.
[15] Wong, G.W., Wang, J., Hug, C., Tsao, T.S. and Lodish, H.F. (2004) A Family of Acrp30/Adiponectin Structural and Functional Paralogs. Proceedings of the National Academy of Sciences of the United States of America, 101, 10302-10307.
[16] Okamoto, Y., Kihara, S., Funahashi, T., Matsuzawa, Y. and Libby, P. (2006) Adiponectin: A Key Adipocytokine in Metabolic Syndrome. Clinical Science, 110, 267-278.
[17] Kubota, N., Terauchi, Y., Yamauchi, T., Kubota, T., Moroi, M., Matsui, J., et al. (2002) Disruption of Adiponectin Causes Insulin Resistance and Neointimal Formation. The Journal of Biological Chemistry, 277, 25863-25866.
[18] Fruebis, J., Tsao, T.S., Javorschi, S., Ebbets-Reed, D., Erickson, M.R., Yen, F.T., et al. (2001) Proteolytic Cleavage Product of 30-kDa Adipocyte Complement-Related Protein Increases Fatty Acid Oxidation in Muscle and Causes Weight Loss in Mice. Proceedings of the National Academy of Sciences of the United States of America, 98, 2005-2010.
[19] Yamauchi, T., Kamon, J., Waki, H., Terauchi, Y., Kubota, N., Hara, K., et al. (2001) The Fat-Derived Hormone Adiponectin Reverses Insulin Resistance Associated with both Lipoatrophy and Obesity. Nature Medicine, 7, 941-946.
[20] Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S., et al. (2003) Cloning of Adiponectin Receptors That Mediate Antidiabetic Metabolic Effects. Nature, 423, 762-769.
[21] Ding, S.T., Liu, B.H. and Ko, Y.H. (2004) Cloning and Expression of Porcine Adiponectin and Adiponectin Receptor 1 and 2 Genes in Pigs. Journal of Animal Science, 82, 3162-3174.
[22] Yamauchi, T., Nio, Y., Maki, T., Kobayashi, M., Takazawa, T., Iwabu, M., et al. (2007) Targeted Disruption of AdipoR1 and AdipoR2 Causes Abrogation of Adiponectin Binding and Metabolic Actions. Nature Medicine, 13, 332-339.
[23] Yamauchi, T. and Kadowaki, T. (2013) Adiponectin Receptor as a Key Player in Healthy Longevity and Obesity-Related Diseases. Cell Metabolism, 17, 185-196.
[24] Teitelbaum, S.L. (2000) Bone Resorption by Osteoclasts. Science, 289, 1504-1508.
[25] Owen, M. (1988) Marrow Stromal Stem Cells. Journal of Cell Science, 63-76.
[26] Manolagas, S.C. and Jilka, R.L. (1995) Bone Marrow, Cytokines, and Bone Remodeling—Emerging Insights into the Pathophysiology of Osteoporosis. The New England Journal of Medicine, 332, 305-311.
[27] Raisz, L.G. (1999) Physiology and Pathophysiology of Bone Remodeling. Clinical Chemistry, 45, 1353-1358.
[28] Dempster, D.W., Cosman, F., Parisien, M., Shen, V. and Lindsay, R. (1993) Anabolic Actions of Parathyroid Hormone on bone. Endocrine Reviews, 14, 690-709.
[29] Li, Y.C., Amling, M., Pirro, A.E., Priemel, M., Meuse, J., Baron, R., et al. (1998) Normalization of Mineral Ion Homeostasis by Dietary Means Prevents Hyperparathyroidism, Rickets, and Osteomalacia, But Not Alopecia in Vitamin D Receptor-Ablated Mice. Endocrinology, 139, 4391-4396.
[30] Rosen, C.J. and Donahue, L.R. (1998) Insulin-Like Growth Factors and Bone: The Osteoporosis Connection Revisited. Experimental Biology and Medicine, 219, 1-7.
[31] Advani, S., LaFrancis, D., Bogdanovic, E., Taxel, P., Raisz, L.G. and Kream, B.E. (1997) Dexamethasone Suppresses in Vivo Levels of Bone Collagen Synthesis in Neonatal Mice. Bone, 20, 41-46.
[32] Kawaguchi, H., Pilbeam, C.C. and Raisz, L.G. (1994) Anabolic Effects of 3,3’,5-Triiodothyronine and Triiodothyroacetic Acid in Cultured Neonatal Mouse Parietal Bones. Endocrinology, 135, 971-976.
[33] Pacifici, R. (1998) Cytokines, Estrogen, and Postmenopausal Osteoporosis—The Second Decade. Endocrinology, 139, 2659-2661.
[34] Takai, H., Kanematsu, M., Yano, K., Tsuda, E., Higashio, K., Ikeda, K., et al. (1998) Transforming Growth Factor-Beta Stimulates the Production of Osteoprotegerin/Osteoclastogenesis Inhibitory Factor by Bone Marrow Stromal Cells. The Journal of Biological Chemistry, 273, 27091-27096.
[35] Ramirez-Yanez, G.O., Hamlet, S., Jonarta, A., Seymour, G.J. and Symons, A.L. (2006) Prostaglandin E2 Enhances Transforming Growth Factor-Beta 1 and TGF-Beta Receptors Synthesis: An in Vivo and in Vitro Study. Prostaglandins, Leukotrienes and Essential Fatty Acids, 74, 183-192.
[36] Steeve, K.T., Marc, P., Sandrine, T., Dominique, H. and Yannick, F. (2004) IL-6, RANKL, TNF-Alpha/IL-1: Interrelations in Bone Resorption Pathophysiology. Cytokine and Growth Factor Reviews, 15, 49-60.
[37] Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., et al. (2002) Induction and Activation of the Transcription Factor NFATc1 (NFAT2) Integrate RANKL Signaling in Terminal Differentiation of Osteoclasts. Developmental Cell, 3, 889-901.
[38] Nakashima, T., Hayashi, M. and Takayanagi, H. (2012) New Insights into Osteoclastogenic Signaling Mechanisms. Trends in Endocrinology and Metabolism, 23, 582-590.
[39] Lacey, D.L., Timms, E., Tan, H.L., Kelley, M.J., Dunstan, C.R., Burgess, T., et al. (1998) Osteoprotegerin Ligand Is a Cytokine That Regulates Osteoclast Differentiation and Activation. Cell, 93, 165-176.
[40] Bucay, N., Sarosi, I., Dunstan, C.R., Morony, S., Tarpley, J., Capparelli, C., et al. (1998) Osteoprotegerin-Deficient Mice Develop Early Onset Osteoporosis and Arterial Calcification. Genes and Development, 12, 1260-1268.
[41] Chamberlain, G., Fox, J., Ashton, B. and Middleton, J. (2007) Concise Review: Mesenchymal Stem Cells: Their Phenotype, Differentiation Capacity, Immunological Features, and Potential for Homing. Stem Cells, 25, 2739-2749.
[42] Duque, G. (2008) Bone and Fat Connection in Aging Bone. Current Opinion in Rheumatology, 20, 429-434.
[43] Muruganandan, S., Roman, A.A. and Sinal, C.J. (2009) Adipocyte Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells: Cross Talk with the Osteoblastogenic Program. Cellular and Molecular Life Sciences, 66, 236-253.
[44] Ross, S.E., Hemati, N., Longo, K.A., Bennett, C.N., Lucas, P.C., Erickson, R.L., et al. (2000) Inhibition of Adipogenesis by Wnt Signaling. Science, 289, 950-953.
[45] Krishnan, V., Bryant, H.U. and Macdougald, O.A. (2006) Regulation of Bone Mass by Wnt Signaling. Journal of Clinical Investication, 116, 1202-1209.
[46] Challa, T.D., Rais, Y. and Ornan, E.M. (2010) Effect of Adiponectin on ATDC5 Proliferation, Differentiation and Signaling Pathways. Molecular and Cellular Endocrinology, 323, 282-291.
[47] Oshima, K., Nampei, A., Matsuda, M., Iwaki, M., Fukuhara, A., Hashimoto, J., et al. (2005) Adiponectin Increases Bone Mass by Suppressing Osteoclast and Activating Osteoblast. Biochemical and Biophysical Research Communications, 331, 520-526.
[48] Lee, H.W., Kim, S.Y., Kim, A.Y., Lee, E.J., Choi, J.Y. and Kim, J.B. (2009) Adiponectin Stimulates Osteoblast Differentiation through Induction of COX2 in Mesenchymal Progenitor Cells. Stem Cells, 27, 2254-2262.
[49] Huang, C.Y., Lee, C.Y., Chen, M.Y., Tsai, H.C., Hsu, H.C. and Tang, C.H. (2010) Adiponectin Increases BMP-2 Expression in Osteoblasts via AdipoR Receptor Signaling Pathway. Journal of Cellular Physiology, 224, 475-483.
[50] Liu, L.F., Shen, W.J., Zhang, Z.H., Wang, L.J. and Kraemer, F.B. (2010) Adipocytes Decrease Runx2 Expression in Osteoblastic Cells: Roles of PPARgamma and Adiponectin. Journal of Cellular Physiology, 225, 837-845.
[51] Williams, G.A., Wang, Y., Callon, K.E., Watson, M., Lin, J.M., Lam, J.B., et al. (2009) In Vitro and in Vivo Effects of Adiponectin on Bone. Endocrinology, 150, 3603-3610.
[52] Tu, Q., Zhang, J., Dong, L.Q., Saunders, E., Luo, E., Tang, J., et al. (2011) Adiponectin Inhibits Osteoclastogenesis and Bone Resorption via APPL1-Mediated Suppression of Akt1. The Journal of Biological Chemistry, 286, 12542-12553.
[53] Jeyabalan, J., Shah, M., Viollet, B. and Chenu, C. (2012) AMP-Activated Protein Kinase Pathway and Bone Metabolism. Journal of Endocrinology, 212, 277-290.
[54] Kadowaki, T., Yamauchi, T., Kubota, N., Hara, K., Ueki, K. and Tobe, K. (2006) Adiponectin and Adiponectin Receptors in Insulin Resistance, Diabetes, and the Metabolic Syndrome. The Journal of Clinical Investigation, 116, 1784-1792.
[55] Yamauchi, T., Kamon, J., Minokoshi, Y., Ito, Y., Waki, H., Uchida, S., et al. (2002) Adiponectin Stimulates Glucose Utilization and Fatty-Acid Oxidation by Activating AMP-Activated Protein Kinase. Nature Medicine, 8, 1288-1295.
[56] Tomas, E., Tsao, T.S., Saha, A.K., Murrey, H.E., Zhang, C.C., Itani, S.I., et al. (2002) Enhanced Muscle Fat Oxidation and Glucose Transport by ACRP30 Globular Domain: Acetyl-CoA Carboxylase Inhibition and AMP-Activated Protein Kinase Activation. Proceedings of the National Academy of Sciences of the United States of America, 99, 16309-16313.
[57] Berg, A.H., Combs, T.P., Du, X., Brownlee, M. and Scherer, P.E. (2001) The Adipocyte-Secreted Protein Acrp30 Enhances Hepatic Insulin Action. Nature Medicine, 7, 947-953.
[58] Shah, M., Kola, B., Bataveljic, A., Arnett, T.R., Viollet, B., Saxon, L., et al. (2010) AMP-Activated Protein Kinase (AMPK) Activation Regulates in Vitro Bone Formation and Bone Mass. Bone, 47, 309-319.
[59] Kim, E.K., Lim, S., Park, J.M., Seo, J.K., Kim, J.H., Kim, K.T., et al. (2012) Human Mesenchymal Stem Cell Differentiation to the Osteogenic or Adipogenic Lineage Is Regulated by AMP-Activated Protein Kinase. Journal of Cellular Physiology, 227, 1680-1687.
[60] Lee, Y.S., Kim, Y.S., Lee, S.Y., Kim, G.H., Kim, B.J., Lee, S.H., et al. (2010) AMP Kinase Acts as a Negative Regulator of RANKL in the Differentiation of Osteoclasts. Bone, 47, 926-937.
[61] Yamaguchi, N., Kukita, T., Li, Y.J., Kamio, N., Fukumoto, S., Nonaka, K., et al. (2008) Adiponectin Inhibits Induction of TNF-Alpha/RANKL-Stimulated NFATc1 via the AMPK Signaling. FEBS Letters, 582, 451-456.
[62] Waki, H., Yamauchi, T., Kamon, J., Ito, Y., Uchida, S., Kita, S., et al. (2003) Impaired Multimerization of Human Adiponectin Mutants Associated with Diabetes. Molecular Structure and Multimer Formation of Adiponectin. The Journal of Biological Chemistry, 278, 40352-40363.
[63] Pajvani, U.B., Hawkins, M., Combs, T.P., Rajala, M.W., Doebber, T., Berger, J.P., et al. (2004) Complex Distribution, Not Absolute Amount of Adiponectin, Correlates with Thiazolidinedione-Mediated Improvement in Insulin Sensitivity. The Journal of Biological Chemistry, 279, 12152-12162.
[64] Amemiya, N., Otsubo, S., Iwasa, Y., Onuki, T. and Nitta, K. (2012) Association between High-Molecular-Weight Adiponectin and Bone Mineral Density in Hemodialysis Patients. Clinical and Experimental Nephrology, 17, 411-415.
[65] Lee, N.K., Sowa, H., Hinoi, E., Ferron, M., Ahn, J.D., Confavreux, C., et al. (2007) Endocrine Regulation of Energy Metabolism by the Skeleton. Cell, 130, 456-469.
[66] Fulzele, K., Riddle, R.C., DiGirolamo, D.J., Cao, X., Wan, C. and Chen, D. (2010) Insulin Receptor Signaling in Osteoblasts Regulates Postnatal Bone Acquisition and Body Composition. Cell, 142, 309-319.
[67] Ferron, M., Wei, J., Yoshizawa, T., Del Fattore, A., DePinho, R.A., Teti, A., et al. (2010) Insulin Signaling in Osteoblasts Integrates Bone Remodeling and Energy Metabolism. Cell, 142, 296-308.
[68] Hwang, Y.C., Jeong, I.K., Ahn, K.J. and Chung, H.Y. (2012) Circulating Osteocalcin Level Is Associated with Improved Glucose Tolerance, Insulin Secretion and Sensitivity Independent of the Plasma Adiponectin Level. Osteoporosis International, 23, 1337-1342.
[69] Hwang, Y.C., Jeong, I.K., Ahn, K.J. and Chung, H.Y. (2009) The Uncarboxylated Form of Osteocalcin Is Associated with Improved Glucose Tolerance and Enhanced Beta-Cell Function in Middle-Aged Male Subjects. Diabetes/Metabolism Research and Reviews, 25, 768-772.
[70] Mao, X., Kikani, C.K., Riojas, R.A., Langlais, P., Wang, L., Ramos, F.J., et al. (2006) APPL1 Binds to Adiponectin Receptors and Mediates Adiponectin Signalling and Function. Nature Cell Biology, 8, 516-523.
[71] Deepa, S.S. and Dong, L.Q. (2009) APPL1: Role in Adiponectin Signaling and Beyond. American Journal of Physiology, Endocrinology and Metabolism, 296, E22-E36.
[72] Prior, J.C. (2007) FSH and Bone—Important Physiology or Not? Trends in Molecular Medicine, 13, 1-3.
[73] Lee, R.C., Feinbaum, R.L. and Ambros, V. (1993) The C. Elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell, 75, 843-854.
[74] Guo, L., Zhao, R.C. and Wu, Y. (2011) The Role of MicroRNAs in Self-Renewal and Differentiation of Mesenchymal Stem Cells. Experimental Hematology, 39, 608-616.
[75] Lian, J.B., Stein, G.S., van Wijnen, A.J., Stein, J.L., Hassan, M.Q., Gaur, T., et al. (2012) MicroRNA Control of Bone Formation and Homeostasis. Nature Reviews Endocrinology, 8, 212-227.
[76] Turner, R.T., Maran, A., Lotinun, S., Hefferan, T., Evans, G.L., Zhang, M., et al. (2001) Animal Models for Osteoporosis. Reviews in Endocrine and Metabolic Disorders, 2, 117-127.
[77] Pietschmann, P., Skalicky, M., Kneissel, M., Rauner, M., Hofbauer, G., Stupphann, D., et al. (2007) Bone Structure and Metabolism in a Rodent Model of Male Senile Osteoporosis. Experimental Gerontology, 42, 1099-1108.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.