Physical Characterization and Elaboration Discussion of a Clay-PEG 6000 Composite with Natural Clay Matrix

DOI: 10.4236/eng.2014.67037   PDF   HTML   XML   3,782 Downloads   4,760 Views   Citations


In this paper, we compare different nanoclay-PEG composites and the influence of the input parameters especially the percentage of PEG and the clay size. Because of the facility of material elaboration, dried state with grinding, we adopted a complete experiments plan to obtain a maximum of robustness of the responses. For each sample, we made an XRD analysis to see if we obtain the intercalation of the PEG 6000 (Polyethylene Glycol 6000) within the clay sheets. The characterization adopted consists on the measurement of the shrinking of some cylinders we made, the liquidity and plasticity limits according to the Casagrande protocol used in geotechnical clays characterizations. We utilize also the methylen blue protocol to estimate the variation of the specific surface of ionic exchange of the clay sheets according to the PEG 6000 percentage and the clay sizes. SEM microscopy permits to visualize some of the phases detected by the XRD analysis. The TEM microscopy permits also to see the amorphous phases created by the grinding protocol which affects significantly the specific surface and the shrinking of the new materials. For each section, we made some conclusions with interpretation in order to integrate these results in civil engineering, classical/artisanal material construction and geotechnical fields.

Share and Cite:

Akhrif, I. , El Jai, M. , Mesrar, L. , Elkhalfi, A. , Touache, A. and Jabrane, R. (2014) Physical Characterization and Elaboration Discussion of a Clay-PEG 6000 Composite with Natural Clay Matrix. Engineering, 6, 338-354. doi: 10.4236/eng.2014.67037.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Szabo, T., et al. (2007) Magnetic Iron Oxide/Clay Composites: Effect of the Layer Silicate Support on the Micro-structure and Phase Formation of Magnetic Nanoparticles. Nanotechnology, 18, 285602.
[2] Fatiha, A. (2008) Elaboration et caractérisation de Nanocomposites Cellulose Montmorillonite. Magister Report, Engineering Science Faculty, Boumerdes University, Boumerdes.
[3] Burba 3rd, J.L. (1981) Adsorption of Ethylene Glycol on Amine-Substituted Montmorillonites. Clays and Clay Minerals, 29, 60-66.
[4] Theng, B.K.G. (1982) Clay-Polymer Interactions: Summary and Perspectives. Clays and Clay Minerals, 30, 1-10.
[5] Benchabane, A. and Bekkour, K. (2004) Etude de l’effet d’un polymère anionique su le comportement rhéologique de suspensions de bentonite. 39ème Colloque annuel du Groupe Francais de Rhéologie, Mulhouse.
[6] Yukselen, Y. and Kaya, A. (2008) Suitability of the Methylene Blue Test for Surface Area, Cation Exchange Capacity and Swell Potential Determination of Clayey Soils. Engineering Geology, 102, 38-45.
[7] Kaewprasit, C., et al. (1998) Quality Measurement, Application of Methylene Blue Adsorption to Cotton Fiber Specific Surface Area Measurement: Part I. Methodology. The Journal of Cotton Science, 2, 164-173.
[8] Hang, P.T. and Brindley, G.W. (1970) Methylene Blue Absorption by Clay Minerals. Determination of Surface Areas and Cation Exchange Capacities (Clay-Organic Studies XVIII). Clays and Clay Minerals, 18, 203-212.
[9] Mesrar, L. (2013) Caractérisation géotechnique minéralogique technologique des marnes miocènes du couloir sud riffan (Taza-Fès): Etude et valorisation. Sciences and Techniques Ph.D. Dissertation, Sidi Mohamed Ben Abdellah University, Morocco.
[10] Lalmi, K. (2008) Etude par Diffraction des RX de matériaux à base de kaolin de KT2 et DD. Magister Report, SCIENCES Faculty, Mentouri-Constantine University.
[11] Rebiai, L., et al. (2010) Caractérisation de la Kaolinite et du Mica dans un kaolin enrichi. Sciences & Technologie A, 31, 20-25.
[12] Pavlidou, S. and Papaspyrides, C.D. (2008) A Review on Polymer-Layered Silicate Nanocomposites. Progress in Polymer Science, 33, 1119-1198.
[13] Santamarina, J.C., Klein, Y.H. and Prencke, E. (2002) Specific Surface: Determination and Relevance. Canadian Geotechnical Journal, 39, 233-241.
[14] Christidis, G.E., Dellisanti, I., Valdre, G. and Makri, P. (2005) Structural Modifications of Smectites Mechanically Deformed under Controlled Conditions. Clay Minerals, 40, 511-522.
[15] Gautier, M. (2008) Interactions entre argile ammoniée et molécules organiques dans le contexte du stockage des déchets. Cas de molécules à courtes chaines. Ph.D. Dissertation, Orléans University, Orléans.
[16] Lefebvre, D. (2002) Effets du retrait-fluage sur les structures en béton précontraint. 4e Conférence spécialisée en génie des structures de la Société canadienne de génie civil, Montréal, 5-8 June 2002.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.