[1]
|
Bernstein, N.A. (1967) The Co-Ordination and Regulation of Movements. Pergamon Press, New York.
|
[2]
|
Flash, T. and Hogan, N. (1985) The Coordination of Arm Movements: An Experimentally Confirmed Mathematical Model. Journal of Neuroscience, 5, 1688-1703.
|
[3]
|
Uno, Y., Kawato, M. and Suzuki, R. (1989) Formation and Control of Optimal Trajectory in Human Multijoint Arm Movement. Biological Cybernetics, 61, 89-101. http://dx.doi.org/10.1007/BF00204593
|
[4]
|
Nakano, E., Imamizu, H., Osu, R., Uno, Y., Gimi, H., Yoshioka, T. and Kawato, M. (1999) Quantitative Examinations of Internal Representations for Arm Trajectory Planning: Minimum Commanded Torque Change Model. The Journal of Neurophysiology, 81, 2140-2155.
|
[5]
|
Okadome, T. and Honda, M. (1999) Kinematic Construction of the Trajectory of Sequential Arm Movements. Biological Cybernetics, 80, 157-169. http://dx.doi.org/10.1007/s004220050514
|
[6]
|
Wada, Y., Kaneko, Y., Nakano, E., Osu, R. and Kawato, M. (2001) Quantitative Examinations for Multi Joint Arm Trajectory Planning—Using a Robust Calculation Algorithm of the Minimum Commanded Torque Change Trajectory. Neural Networks, 14, 381-393. http://dx.doi.org/10.1016/S0893-6080(01)00026-0
|
[7]
|
Friedman, J. and Flash, T. (2009) Trajectory of the Index Finger during Grasping. Experimental Brain Research, 196, 497-509. http://dx.doi.org/10.1007/s00221-009-1878-2
|
[8]
|
Pham, Q.C., Hicheur, H., Arechavaleta, G., Laumond, J.P. and Berthoz, A. (2007) The Formation of Trajectories during Goal-Oriented Locomotion in Humans. II. A Maximum Smoothness Model. European Journal of Neuroscience, 26, 2391-2403. http://dx.doi.org/10.1111/j.1460-9568.2007.05835.x
|
[9]
|
Xiang, Y., Arora, J.S. and Abdel-Malek, K. (2011) Optimization-Based Prediction of Asymmetric Human Gait. Journal of Biomechanics, 44, 683-693. http://dx.doi.org/10.1016/j.jbiomech.2010.10.045
|
[10]
|
Kuzelicki, J., Zefran, M., Burger, H. and Bajd, T. (2005) Synthesis of Standing-Up Trajectories Using Dynamic Optimization. Gait & Posture, 21, 1-11. http://dx.doi.org/10.1016/j.gaitpost.2003.11.004
|
[11]
|
Yamasaki, H.R., Kambara, H. and Koike, Y. (2011) Dynamic Optimization of the Sit-to-Stand Movement. Journal of Applied Biomechanics, 27, 306-313.
|
[12]
|
Sadeghi, M., Andani, M.E., Bahrami, F. and Parnianpour, M. (2013) Trajectory of Human Movement during Sit to Stand: A New Modeling Approach Based on Movement Decomposition and Multi-Phase Cost Function. Experimental Brain Research, 229, 221-234. http://dx.doi.org/10.1007/s00221-013-3606-1
|
[13]
|
Yamasaki, T., Gotoh, K. and Xin, X. (2010) Optimality of a Kip Performance on the High Bar: An Example of Skilled Goal-Directed Whole-Body Movement. Human Movement Science, 29, 464-482. http://dx.doi.org/10.1016/j.humov.2009.11.007
|
[14]
|
Pai, Y.C. and Rogers, M.W. (1990) Control of Body Mass Transfer as a Function of Speed of Ascent in Sit-to-Stand. Medicine and Science in Sports and Exercise, 22, 378-384. http://dx.doi.org/10.1249/00005768-199006000-00015
|
[15]
|
Dubost, V., Beauchet, O., Manckoundia, P., Herrmann, F. and Mourey, F. (2005) Decreased Trunk Angular Displacement during Sitting down: An Early Feature of Aging. Physical Therapy, 85, 404-412.
|
[16]
|
Wada, Y. and Kawato, M. (2004) A Via-Point Time Optimization Algorithm for Complex Sequential Trajectory Formation. Neural Networks, 17, 353-364. http://dx.doi.org/10.1016/j.neunet.2003.11.009
|
[17]
|
Winter, D.A. (2009) Biomechanics and Motor Control of Human Movement. Wiley, Hoboken. http://dx.doi.org/10.1002/9780470549148
|
[18]
|
Bryant, J.T., Wevers, H.W. and Lowe, P.J. (1984) Methods of Data Smoothing for Instantaneous Center of Rotation Measurements. Medical and Biological Engineering and Computing, 22, 597-602. http://dx.doi.org/10.1007/BF02443876
|
[19]
|
Kralj, A., Jaeger, R.J. and Munih, M. (1990) Analysis of Standing up and Sitting down in Humans: Definitions and Normative Data Presentation. Journal of Biomechanics, 23, 1123-1138. http://dx.doi.org/10.1016/0021-9290(90)90005-N
|
[20]
|
Riley, P.O., Schenkman, M.L., Mann, R.W. and Hodge, W.A. (1991) Mechanics of a Constrained Chair-Rise. Journal of Biomechanics, 24, 77-85. http://dx.doi.org/10.1016/0021-9290(91)90328-K
|
[21]
|
Kerr, K.M., White, J.A., Barr, D.A. and Mollan, R.A.B. (1994) Standardization and Definitions of the Sit-Stand-Sit Movement Cycle. Gait & Posture, 2, 182-190. http://dx.doi.org/10.1016/0966-6362(94)90006-X
|
[22]
|
Alexander, N.B., Schultz, A.B. and Warwick, D.N. (1991) Rising from a Chair: Effects of Age and Functional Ability on Performance Biomechanics. Journal of Gerontology, 46, M91-M98. http://dx.doi.org/10.1093/geronj/46.3.M91
|
[23]
|
Schultz, A.B., Alexander, N.B. and Ashton-Miller, J.A. (1992) Biomechanical Analyses of Rising from a Chair. Journal of Biomechanics, 25, 1383-1391. http://dx.doi.org/10.1016/0021-9290(92)90052-3
|
[24]
|
Etnyre, B. and Thomas, D.Q. (2007) Event Standardization of Sit-to-Stand Movements. Physical Therapy, 87, 1651-1666. http://dx.doi.org/10.2522/ptj.20060378
|
[25]
|
Matsui, T. (2010) Optimal Control Model for Reproducing Human Rising Movements from Chair and Its Effectiveness Verification. 2010 IEEE International Conference on Robotics and Biomimetics (ROBIO), Tianjin, 944-949. http://dx.doi.org/10.1109/ROBIO.2010.5723453
|
[26]
|
Scholz, J.P. and Schöner, G. (1999) The Uncontrolled Manifold Concept: Identifying Control Variables for a Functional Task. Experimental Brain Research, 126, 289-306. http://dx.doi.org/10.1007/s002210050738
|
[27]
|
Reisman, D.S., Scholz, J.P. and Schöner, G. (2002) Coordination Underlying the Control of Whole Body Momentum during Sit-to-Stand. Gait & Posture, 15, 45-55. http://dx.doi.org/10.1016/S0966-6362(01)00158-8
|
[28]
|
Shumway-Cook, A. and Wool-lacott, M.H. (2007) Motor Control: Translating Research into Clinical Practice. 3rd Edition, Lippincott Williams & Wilkins, Philadelphia.
|