[1]
|
Wusu, A.S., Akanbi, M.A. and Okunuga, S.A. (2013) A Three-Stage Multiderivative Explicit Runge-Kutta Method. American Journal of Computational Mathematics, 3, 121-126.
http://dx.doi.org/10.4236/ajcm.2013.32020
|
[2]
|
Shiferaw, A. and Mittal, R.C. (2014) High Accurate Fourth-Order Finite Difference Solutions of the Three Dimensional Poisson’s Equation in Cylindrical Coordinate. American Journal of Computational Mathematics, 4, 73-86. http://dx.doi.org/10.4236/ajcm.2014.42007
|
[3]
|
Hong, J. and Li, C. (2006) Multi-Symplectic Runge-Kutta Methods for Nonlinear Dirac Equations. Journal of Computational Physics, 211, 448-472. http://dx.doi.org/10.1016/j.jcp.2005.06.001
|
[4]
|
Lele, S.K. (1992) Compact Finite Difference Schemes with Spectral-Like Solution. Journal of Computational Physics, 103, 16-42. http://dx.doi.org/10.1016/0021-9991(92)90324-R
|
[5]
|
Ma, Y., Kong, L. and Hong, J. (2011) High-Order Compact Splitting Multisymplectic Method for the Coupled Nonlinear Schrodinger Equations. Computers & Mathematics with Applications, 61, 319-333. http://dx.doi.org/10.1016/j.camwa.2010.11.007
|
[6]
|
Sekhar, T., Raju B. (2012) An Efficient Higher Order Compact Scheme to Capture Heat Transfer Solutions in Spherical Geometry. Computer Physics Communications, 183, 2337-2345. http://dx.doi.org/10.1016/j.cpc.2012.06.001
|
[7]
|
Phillips, A. (2003) Introduction to Quantum Mechanics. Wiley, Chichester.
|
[8]
|
Hong, J. and Kong, L. (2010) Novel Multi-Symplectic Integrators for Nonlinear Fourth-Order Schrodinger Equation with Trapped Term. Communications in Computational Physics, 7, 613-630.
|
[9]
|
Hong, J., Liu, X. and Li, C. (2007) Multi-Symplectic Runge-Kutta-Nystrom Methods for Nonlinear Schrodinger Equations with Variable Coefficients. Journal of Computational Physics, 226, 1968-1984. http://dx.doi.org/10.1016/j.jcp.2007.06.023
|
[10]
|
Kong, L., Hong, J., Wang, L. and Fang, F. (2009) Symplectic Integrator for Nonlinear High Order Schrodinger Equation with a Trapped Term. Journal of Computational and Applied Mathematics, 231, 664-679. http://dx.doi.org/10.1016/j.cam.2009.04.023
|