Effect of Copper and Iron on Acidogenic Biomass in an Anaerobic Packed Bed Reactor


The aim of this study was to evaluate the effect of copper and iron on acidogenic biomass immobilized on clinoptilolite in an anaerobic packed bed reactor. Copper and iron were fed to the reactor at concentrations of 100 and 300 mg·L-1, respectively. Both metal ions had insignificant inhibitory effect over the metabolism of the biomass, specifically, on substrate consumption and production of volatile fatty acids (VFAs). The microstructural characterization of the biofilm by Scanning Electron Microscopy showed no effect on the morphology of the microorganisms after the metals treatment. Copper and iron removal was also measured in the reactor, achieving a breakthrough time of 3 days, during which removal efficiencies were higher than 90%. It was also observed that the biomass had a greater affinity for copper. The results indicate that acidogenic biomass can be used effectively as a sorbent agent. The pollution of river-streams with heavy metals—mainly copper and iron—was one of the most compelling motivations for conducting this investigation. The San Pedro River Basin, a trans-boundary river that originates near the mining town of Cananea, Sonora, México, and flows to Arizona, USA, exemplifies this environmental issue.

Share and Cite:

Figueroa-Torres, G. , Certucha-Barragán, M. , Almendariz-Tapia, F. , Monge-Amaya, O. , Acedo-Félix, E. , Pech-Canul, M. , Leal-Cruz, A. and VillaVelázquez-Mendoza, C. (2014) Effect of Copper and Iron on Acidogenic Biomass in an Anaerobic Packed Bed Reactor. Advances in Bioscience and Biotechnology, 5, 564-571. doi: 10.4236/abb.2014.56066.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Cañizares-Villanueva, R.O. (2000) Biosorción de metales pesados mediante el uso de biomasa microbiana. Revista Latinoamericana de Microbiología, 42, 131-143.
[2] Monge-Amaya, O., Valenzuela-Garcia, J.L., Acedo-Felix, E., Certucha-Barragan, M.T. and Almendariz-Tapia, F.J. (2008) Copper Biosorption in Batch and Continuous Evaluation Using Immobilized Aerobic Bacteria in Clinoptilolite. Revista Internacional De Contaminacion Ambiental, 24, 107-115.
[3] Gómez-Alvarez, A., Villalba-Atondo, A., Acosta-Ruiz, G., Castañeda-Olivares, M. and Kamp, D. (2004) Metales pesados en el agua superficial del río San Pedro durante 1997-1999. Revista Internacional de Contaminación Ambiental, 20, 1-8.
[4] Gomez-Alvarez, A., Meza-Figueroa, D., Villalba-Atondo, A.I., Valenzuela-Garcia, J.L., Ramirez-Hernandez, J. and Almendariz-Tapia, F.J. (2009) Estimation of Potential Pollution from Mine Tailings in the San Pedro River (1993-2005), Mexico-US Border. Environmental Geology, 57, 1469-1479.
[5] Nies, D.H. (1999) Microbial Heavy-Metal Resistance. Applied Microbiology and Biotechnology, 51, 730-750.
[6] Chen, Y., Cheng, J.J. and Creamer, K.S. (2008) Inhibition of Anaerobic Digestion Process: A Review. Bioresource Technology, 99, 4044-4064.
[7] García-Morales, J., Romero-García L. and Sales-Márquez, D. (1999) Influencia de las paradas estacionales sobre la biomasa inmovilizada en reactores anaerobios. Ingeniería del Agua, 6, 249-256.
[8] Lin, C.Y. and Chen, C.C. (1999) Effect of Heavy Metals on the Methanogenic UASB Granule. Water Research, 33, 409-416.
[9] Montalvo, S., Guerrero, L., Borja, R., Sanchez, E., Milan, Z., Cortes, I. and de la Rubia, M.A. (2012) Application of Natural Zeolites in Anaerobic Digestion Processes: A Review. Applied Clay Science, 58, 125-133.
[10] APHA (1995) Standard Methods. American Public Health Association, Washington DC.
[11] Miller, G. (1959) Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31, 426-428.
[12] Powell, G.E. and Archer, D.B. (1989) Online Titration Method for Monitoring Buffer Capacity and Total Volatile Fatty Acid Levels in Anaerobic Digesters. Biotechnology and Bioengineering, 33, 570-577.
[13] Pakshirajan, K. and Swaminathan, T. (2009) Biosorption of Copper and Cadmium in Packed Bed Columns with Live Immobilized Fungal Biomass of Phanerochaete chrysosporium. Applied Biochemistry and Biotechnology, 157, 159-173.
[14] Lin, C.Y. (1993) Effect of Heavy Metals on Acidogenesis in Anaerobic Digestion. Water Research, 27, 147-152.
[15] Lin, C.Y. and Chen, C.C. (1997) Toxicity-Resistance of Sludge Biogranules to Heavy Metals. Biotechnology Letters, 19, 557-560.
[16] Almendariz-Tapia, F.J. (2001) Degradación del alquilbencen sulfonato lineal (LAS) en un reactor acidogénico bioaumentado con una cepa de Pseudomonas aeruginosa M113. Universidad Autónoma Metropolitana, Iztapalapa.
[17] Pal, A. and Paul, A.K. (2008) Microbial Extracellular Polymeric Substances: Central Elements in Heavy Metal Bioremediation. Indian Journal of Microbiology, 48, 49-64.
[18] Chojnacka, K. (2010) Biosorption and Bioaccumulation—The Prospects for Practical Applications. Environment International, 36, 299-307.
[19] Volesky, B. (2003) Sorption and Biosorption. BV Sorbex, Inc., Montreal, 316.
[20] Park, D., Yun, Y.S. and Park, J.M. (2010) The Past, Present, and Future Trends of Biosorption. Biotechnology and Bioprocess Engineering, 15, 86-102.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.