[1]
|
National Osteoporosis Foundation (2011). http://nof.org/learn
|
[2]
|
Black, D.M., Cummings, S.R., Genant, H.K., Nevitt, M.C., Palermo, L. and Browner, W. (1992) Axial and Appendicular Bone Density Predict Fractures in Older Women. Journal of Bone and Mineral Research, 7, 633-638. http://dx.doi.org/10.1002/jbmr.5650070607
|
[3]
|
Cummings, S.R., Black, D.M., Nevitt, M.C., Browner, W.S., Cauley, J.A., Genant, H.K., Mascioli, S.R., Scott, J.C., Seeley, D.G., Steiger, P., et al. (1990) Appendicular Bone Density and Age Predict Hip Fracture in Women. The Study of Osteoporotic Fractures Research Group. JAMA, 263, 665-668. http://dx.doi.org/10.1001/jama.1990.03440050059033
|
[4]
|
Vestergaard, P., Rejnmark, L. and Mosekilde, L. (2009) Loss of Life Years after a Hip Fracture. Acta Orthopaedica, 80, 525-530. http://dx.doi.org/10.3109/17453670903316835
|
[5]
|
Chan, K., Anderson, M. and Lau, E. (2003) Exercise Interventions: Defusing the World’s Osteoporosis Time Bomb. Bulletin of the World Health Organization, 81, 827-830.
|
[6]
|
Ahola, R., Korpelainen, R., Vainionpaa, A., Leppaluoto, J. and Jamsa, T. (2009) Time-Course of Exercise and Its Association with 12-Month Bone Changes. BMC Musculoskeletal Disorders, 10, 138. http://dx.doi.org/10.1186/1471-2474-10-138
|
[7]
|
Kemmler, W., von Stengel, S., Engelke, K., Haberle, L. and Kalender, W.A. (2010) Exercise Effects on Bone Mineral Density, Falls, Coronary Risk Factors, and Health Care Costs in Older Women: The Randomized Controlled Senior Fitness and Prevention (SEFIP) Study. Archives of Internal Medicine, 170, 179-185. http://dx.doi.org/10.1001/archinternmed.2009.499
|
[8]
|
Michaelsson, K., Byberg, L., Ahlbom, A., Melhus, H. and Farahmand, B.Y. (2011) Risk of Severe Knee and Hip Osteoarthritis in Relation to Level of Physical Exercise: A Prospective Cohort Study of Long-Distance Skiers in Sweden. PLoS One, 6, e18339. http://dx.doi.org/10.1371/journal.pone.0018339
|
[9]
|
Campion, F., Nevill, A.M., Karlsson, M.K., Lounana, J., Shabani, M., Fardellone, P. and Medelli, J. (2010) Bone Status in Professional Cyclists. International Journal of Sports Medicine, 31, 511-515. http://dx.doi.org/10.1055/s-0029-1243616
|
[10]
|
Creighton, D.L., Morgan, A.L., Boardley, D. and Brolinson, P.G. (2001) Weight-Bearing Exercise and Markers of Bone Turnover in Female Athletes. Journal of Applied Physiology, 90, 565-570.
|
[11]
|
Dook, J.E., James, C., Henderson, N.K. and Price, R.I. (1997) Exercise and Bone Mineral Density in Mature Female Athletes. Medicine and Science in Sports and Exercise, 29, 291-296. http://dx.doi.org/10.1097/00005768-199703000-00002
|
[12]
|
Mudd, L.M., Fornetti, W. and Pivarnik, J.M. (2007) Bone Mineral Density in Collegiate Female Athletes: Comparisons among Sports. Journal of Athletic Training, 42, 403-408.
|
[13]
|
Nichols, J.F., Palmer, J.E. and Levy, S.S. (2003) Low Bone Mineral Density in Highly Trained Male Master Cyclists. Osteoporosis International, 14, 644-649. http://dx.doi.org/10.1007/s00198-003-1418-z
|
[14]
|
Mukherjee, A., Mukherjee, P. and Rude, R. (2010) Bikram Yoga as a Countermeasure of Bone Loss in Women. Chinese Medicine, 1, 1-4. http://dx.doi.org/10.4236/cm.2010.11001
|
[15]
|
Tucker, K.L. (2014) Colas, but Not Other Carbonated Beverages, Are Associated with Low Bone Mineral Density in Older Women: The Framingham Osteoporosis Study. American Journal of Clinical Nutrition, 84, 936-942.
|
[16]
|
Tucker, K.L. (2003) Dietary Intake and Bone Status with Aging. Current Pharmaceutical Design, 9, 2687-2704. http://dx.doi.org/10.2174/1381612033453613
|
[17]
|
Chilibeck, P.D., Vatanparast, H., Pierson, R., Case, A., Olatunbosun, O., Whiting, S.J., Beck, T.J., Pahwa, P. and Biem, H.J. (2013) Effect of Exercise Training Combined with Isoflavone Supplementation on Bone and Lipids in Postmenopausal Women: A Randomized Clinical Trial. Journal of Bone and Mineral Research, 28, 780-793. http://dx.doi.org/10.1002/jbmr.1815
|
[18]
|
Bonaiuti, D., Shea, B., Iovine, R., et al. (2002) Exercise for Preventing and Treating Osteoporosis in Postmenopausal Women (Cochrane Review). In: The Cochrane Library, Issue 4, Update Software, Oxford,
|
[19]
|
Fishman, L. (2009) Yoga for Osteoporosis. Topics in Geriatric Rehabilitation, 25, 244-250. http://dx.doi.org/10.1097/TGR.0b013e3181b02dd6
|
[20]
|
Woo, J., Hong, A., Lau, E. and Lynn, H. (2007) A Randomised Controlled Trial of Tai Chi and Resistance Exercise on Bone Health, Muscle Strength and Balance in Community-Living Elderly People. Age and Ageing, 36, 262-268. http://dx.doi.org/10.1093/ageing/afm005
|
[21]
|
Wu, X.P., Liao, E.Y., Huang, G., Dai, R.C. and Zhang, H. (2003) A Comparison Study of the Reference Curves of Bone Mineral Density at Different Skeletal Sites in Native Chinese, Japanese, and American Caucasian Women. Calcified Tissue International, 73, 122-132. http://dx.doi.org/10.1007/s00223-002-1069-7
|
[22]
|
Del Rio, L., Pons, F., Huguet, M., Setoain, F.J. and Setoain, J. (1995) Anteroposterior versus Lateral Bone Mineral Density of Spine Assessed by Dual X-Ray Absorptiometry. European Journal of Nuclear Medicine, 22, 407-412. http://dx.doi.org/10.1007/BF00839054
|
[23]
|
Office of the Surgeon General (US) (2004) Bone Health and Osteoporosis: A Report of the Surgeon General. Office of the Surgeon General (US), Rockville. http://www.ncbi.nlm.nih.gov/books/NBK45503/
|
[24]
|
Oken, B.S., et al. (2006) Randomized, Conrolled, Six-Motn Trail of Yoga in Healthy Seniors: Effects on the Cognition and Quality of Life. Alternative Therapies in Health and Medicine, 12, 40-47.
|
[25]
|
Woodyard, C. (2011) Exploring the Therapeutic Effects of Yoga and Its Ability to Increase Quality of Life. International Journal of Yoga, 4, 49-54. http://dx.doi.org/10.4103/0973-6131.85485
|
[26]
|
Vogt, M.T., Cauley, J.A., Kuller, L.H. and Nevitt, M.C. (1997) Bone Mineral Density and Blood Flow to the Lower Extremities: The Study of Osteoporotic Fractures. Journal of Bone and Mineral Research, 12, 283-289. http://dx.doi.org/10.1359/jbmr.1997.12.2.283
|