[1]
|
El Naschie, M.S. (2013) A Unified Newtonian-Relativistic Quantum Resolution of the Supposedly Missing Dark Energy of the Cosmos and the Constancy of the Speed of Light. International Journal of Modern Nonlinear Theory and Application, 2, 43-54. http://dx.doi.org/10.4236/ijmnta.2013.21005
|
[2]
|
El Naschie, M.S. (2013) From Yang-Mills photon in Curved Spacetime to Dark Energy Density. Journal of Quantum Information Science, 3, 121-126. http://dx.doi.org/10.4236/jqis.2013.34016
|
[3]
|
El Naschie, M.S. (2014) Pinched Material Einstein Spacetime Produces Accelerated Cosmic Expansion. International Journal of Astronomy and Astrophysics, 4, 80-90. http://dx.doi.org/10.4236/ijaa.2014.41009
|
[4]
|
El Naschie, M.S. (2014) Capillary Surface Energy Elucidation of the Cosmic Dark Energy-Ordinary Energy Duality. Open Journal of Fluid Dynamics, 4, 15-17. http://dx.doi.org/10.4236/ojfd.2014.41002
|
[5]
|
El Naschie, M.S. (2014) Why E Is Not Equal to mc2. Journal of Modern Physics, in Press.
|
[6]
|
Linder, E., (2008) Dark Energy. “Scholarpediablog”. The Peer-Reviewed Open Access Encyclopedia, Scholarpedia, 3, Article ID: 4900.
|
[7]
|
Amendola, L. and Tsujikawa, S. (2010) Dark Energy. Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511750823
|
[8]
|
Copeland, E.J., Sami, M. and Tsujikawa, S. (2006) Dynamics of Dark Energy. arXiv: hep-th/0603057V3
|
[9]
|
Coldea, R. et al. (2010) Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E8 Symmetry. Science, 327, 177-180. http://dx.doi.org/10.1126/science.1180085
|
[10]
|
El Naschie, M.S. (2013) The Quantum Entanglement behind the Missing Dark Energy. Journal of Physics and Applications, 2, 88-96.
|
[11]
|
Kheyfets, A. and Wheeler, J.A. (1986) Boundary of a Boundary Principle and Geometric Structure of Field Theories. International Journal of Theoretical Physics, 25, 573-580.
|
[12]
|
Wheeler, J.A. (1989) Information, Physics, Quantum the Search for Links. The 3rd International Symposium Foundations of Quantum Mechanics, Tokyo, 310-336.
|
[13]
|
Hartle, J. and Hawking, S. (1983) Wave Function of The Universe. Physical Review D, 28, Article ID: 2960. http://dx.doi.org/10.1103/PhysRevD.28.2960
|
[14]
|
Hartle, J. and Hawking, S. (2008) No-Boundary Measure of the Universe. Physical Review Letters, 100, Article ID: 201301. http://dx.doi.org/10.1103/PhysRevLett.100.201301
|
[15]
|
Henle, J.M.(1986) An Outline of Set Theory. Springer, New York. http://dx.doi.org/10.1007/978-1-4613-8680-3
|
[16]
|
Devlin, K. (1993) The Joy of Sets. Springer, New York (in Particular See p. 5).
|
[17]
|
El Naschie, M.S. (2013) Topological-Geometrical and Physical Interpretation of the Dark Energy of the Cosmos as a “Halo” Energy of the Schrodinger Quantum Wave. Journal of Modern Physics, 4, 591-596. http://dx.doi.org/10.4236/jmp.2013.45084
|
[18]
|
El Naschie, M.S. (2013) Nash embedding of Witten’s M-Theory and the Hawking-Hartle Quantum Wave of Dark Energy. Journal of Modern Physics, 4, 1417-1428. http://dx.doi.org/10.4236/jmp.2013.410170
|
[19]
|
El Naschie, M.S. and Helal, A. (2013) Dark energy Explained via the Hawking-Hartle Quantum Wave and the Topology of Cosmic Crystallography. International Journal of Astronomy and Astrophysics, 3, 318-343. http://dx.doi.org/10.4236/ijaa.2013.33037
|
[20]
|
Helal, M.A., Marek-Crnjac, L. and He, J.-H. (2013) The Three Page Guide to the Most Important Results of M. S. El Naschie’s Research in E-Infinity and Quantum Physics and Cosmology. Open Journal of Microphysics, 3, 141-145. http://dx.doi.org/10.4236/ojm.2013.34020
|
[21]
|
Marek-Crnjac, L. (2013) Cantorian Space-Time Theory—The Physics of Empty Sets in Connection with Quantum Entanglement and Dark Energy. Lambert Academic Publishing, Saarbrücken.
|
[22]
|
El Naschie, M.S., Marek-Crnjac, L., He, J.-H. and Helal, M.A. (2013) Computing the Missing Dark Energy of a Clopen Universe Which Is Its Own Multiverse in Addition to Being Both Flat and Curved. Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics, 3, 3-10.
|
[23]
|
Grossman, L. (2014) Ripples of the Multiverse. New Scientist, 221, 8-10. http://dx.doi.org/10.1016/S0262-4079(14)60557-1
|