[1]
|
Polis, A.G. and Hurd, S.D. (1996) Linking Marine and Terrestrial Food Webs: Allochthonous Input from the Ocean Supports High Secondary Productivity on Small Islands and Coastal Land Communities. The American Naturalist, 147, 396-423. http://dx.doi.org/10.1086/285858
|
[2]
|
The Brazilian Ministry of the Environment (2013) Zona Costeira e Marinha. http://www.mma.gov.br/biodiversidade/biodiversidade-aquatica/zona-costeira-e-marinha
|
[3]
|
Souto, R.D. (2013) Atlas de Indicadores de Sustentabilidade para os Municípios Costeiros do Estado do Rio de Janeiro. http://www.ivides.org/atlas
|
[4]
|
Cohen, J.E., Briand, F. and Newman, C.M. (1990) Community Food Webs: Data and Theory. Springer-Verlag, Berlin. http://dx.doi.org/10.1007/978-3-642-83784-5
|
[5]
|
Caldarelli, G., Garlaschelli, D. and Pietronero, L. (2003) Food Web Structure and the Evolution of Complex Networks. In: Pastor-Satorras, R., Rubi, M. and Diaz-Guilera, A., Eds., Statistical Mechanics of Complex Networks, SpringerVerlag Berlin Heidelberg, New York, 148-166. http://dx.doi.org/10.1007/978-3-540-44943-0_9
|
[6]
|
Dunne, J.A., Williams, R.J., Martinez, N.D., Wood, R.A. and Erwin, D.H. (2008) Compilation and Network Analyses of Cambrian Food Webs. PLoS Biology, 6, e102. http://dx.doi.org/10.1371/journal.pbio.0060102
|
[7]
|
Dunne, J.A. and Williams, R.J. (2009) Cascading Extinctions and Community Collapse in Model Food Webs. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1711-1723. http://dx.doi.org/10.1098/rstb.2008.0219
|
[8]
|
O’Gorman, E.J., Jacob, U., Jonsson, T. and Emmerson, M.C. (2010) Interaction Strength, Food Web Topology and the Relative Importance of Species in Food Webs. Journal of Animal Ecology, 79, 682-692. http://dx.doi.org/10.1111/j.1365-2656.2009.01658.x
|
[9]
|
Ramsey, D.S.L. and Norbury, G.L. (2009) Predicting the Unexpected: Using a Qualitative Model of a New Zealand Dryland Ecosystem to Anticipate Pest Management Outcomes. Austral Ecology, 34, 409-421. http://dx.doi.org/10.1111/j.1442-9993.2009.01942.x
|
[10]
|
Ramsey, D.S.L. and Veltman, C. (2005) Predicting the Effects of Perturbations on Ecological Communities: What Can Qualitative Models Offer? Journal of Animal Ecology, 74, 905-916. http://dx.doi.org/10.1111/j.1365-2656.2005.00986.x
|
[11]
|
Creed, J.C., Oliveira, A.E.S., Pires, D.O., Figueiredo, M.A.O., Ferreira, C.E.L., Ventura, C.R.R., et al. (2007) RAP Ilha Grande-um levantamento da biodiversidade: Histórico e conhecimento da biota. In: Creed, J.C., Pires, D.O. and Figueiredo, M.A.O., Eds., Biodiversidade Marinha da Baía da Ilha Grande, MMA/SBF, Brasília, 43-63.
|
[12]
|
Lacerda, L.D., Koudstaal, R., Blower, B.T. and Pfeiffer, W.C. (1988) IFIAS Research Program on Coastal Resources Management: Sepetiba Bay Management Study: Workplan. International Federation of Institutes of Advanced Studies, Rio de Janeiro.
|
[13]
|
Lacerda, L.D., Pfeiffer, W.C. and Fiszman, M. (1987) Heavy Metal Distribution, Availability and Fate in Sepetiba Bay, SE Brazil. Science of the Total Environment, 65, 163-173. http://dx.doi.org/10.1016/0048-9697(87)90169-0
|
[14]
|
Molisani, M.M., Marins, R.V., Machado, W., Paraquetti, H.H.M., Bidone, E.D. and Lacerda, L.D. (2004) Environmental Changes in Sepetiba Bay, SE Brazil. Regional Environmental Change, 4, 17-27. http://dx.doi.org/10.1007/s10113-003-0060-9
|
[15]
|
Pereira, G.C., Oliveira, M.M.F. and Ebecken, N.F.F (2013) Genetic Optimization of Artificial Neural Networks to Forecast Virioplankton Abundance from Cytometric Data. Journal of Intelligent Learning Systems and Applications, 5, 57-66. http://dx.doi.org/10.4236/jilsa.2013.51007
|
[16]
|
Dubelaar, G.B.J., Venekamp, R.R. and Gerritzen, P.L. (2003) Handsfree Counting and Classification of Living Cells and Colonies. 6th Congress on Marine Sciences, MarCuba 2003, Havana, 1-5 December 2003.
|
[17]
|
Lee, K.H. (2005) First Course on Fuzzy Theory and Applications, v. 27. Springer-Verlag, Berlin, Heidelberg, New York.
|
[18]
|
Mordeson, J.N. and Nair, P.S. (2000) Fuzzy Graphs and Fuzzy Hypergraphs, v. 46. Physica-Verlag, Heidelberg, New York.
http://dx.doi.org/10.1007/978-3-7908-1854-3
|
[19]
|
Diestel, R. (2010) Graph Theory, v. 173. 4th Electronic Edition, Springer-Verlag, Heidelberg, New York.
|
[20]
|
Wasserman, S. and Faust, K. (1994) Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511815478
|
[21]
|
Zelen, M. and Severo, N.C. (1964) Probability Functions. In: Abramowitz, M. and Stegun, I.A., Eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Government Printing Office, Washington DC.
|
[22]
|
Watts, D.J. and Strogatz, S. (1998) Collective Dynamics of “Small-World” Networks. Nature, 393, 440-442. http://dx.doi.org/10.1038/30918
|
[23]
|
Newman, M.E.J. (2010) Networks: An Introduction. Oxford University Press, New York, 772. http://dx.doi.org/10.1093/acprof:oso/9780199206650.001.0001
|
[24]
|
Wirtz, K.W. (2012) Who Is Eating Whom? Morphology and Feeding Types Determine the Size Relation between Planktonic Predators and Their Ideal Prey. Marine Ecology Progress Series, 445, 1-12. http://dx.doi.org/10.3354/meps09502
|
[25]
|
Green, R.E., Sosik, H.M., Olson, R.J. and DuRand, M.D. (2003) Flow Cytometric Determination of Size and Complex Refractive Index for Marine Particles: Comparison with Independent and Bulk Estimates. Applied Optics, 42, 526-541. http://dx.doi.org/10.1364/AO.42.000526
|
[26]
|
Chávez, F.P. (1989) Size Distribution of Phytoplankton in the Central and Eastern Tropical Pacific. Global Biogeochemical Cycles, 3, 27-35. http://dx.doi.org/10.1029/GB003i001p00027
|
[27]
|
Calbet, A. (2008) The Trophic Roles of Microzooplankton in Marine Systems. ICES Journal of Marine Science, 65, 325-331. http://dx.doi.org/10.1093/icesjms/fsn013
|
[28]
|
Jeong, H.J., Yoo, Y.D., Kim, J.S., Seong, K.A., Seon, N.J. and Kim, H.T. (2010) Growth, Feeding and Ecological Roles of the Mixotrophic and Heterotrophic Dinoflagellates in Marine Planktonic Food Webs. Ocean Science Journal, 45, 65-91. http://dx.doi.org/10.1007/s12601-010-0007-2
|
[29]
|
Murtaugh, P.A. and Derryberry, D.R. (1998) Models of Connectance in Food Webs. Biometrics, 54, 754-761. http://dx.doi.org/10.2307/3109781
|
[30]
|
Dunne, J.A., Williams, R.J. and Martinez, N.D. (2002) Food-Web Structure and Network Theory: The Role of Connectance and Size. Proceedings of the National Academy of Sciences of the United States of America, 99, 12917-12922. http://dx.doi.org/10.1073/pnas.192407699
|
[31]
|
Dunne, J.A., Williams, R.J. and Martinez, N.D. (2002) Small Networks but Not Small Worlds: Unique Aspects of Food Web Structure. SFI Working Paper. http://www.santafe.edu/research/working-papers/abstract/f1c55aa76f1ad351a52497c9650ee636
|
[32]
|
Montoya, J.M. and Solé, R.V. (2002) Small World Patterns in Food Webs. Journal of Theoretical Biology, 214, 405412.
http://dx.doi.org/10.1006/jtbi.2001.2460
|
[33]
|
Olesen, J.M., Bascompte, J., Jordano, P. and Dupont, Y.L. (2006) The Smallest of All Worlds: Pollination Networks. Journal of Theoretical Biology, 240, 270-276.
http://dx.doi.org/10.1016/j.jtbi.2005.09.014
|
[34]
|
Humphries, M.D. and Gurney, K. (2008) Network “Small-World-Ness”: A Quantitative Method for Determining Canonical Network Equivalence. PLoS ONE, 3, e0002051. http://dx.doi.org/10.1371/journal.pone.0002051
|
[35]
|
Steele, J.A., Countway, P.D., Xia, L., Vigil, P.D., Beman, J.M., Kim, D.Y., et al. (2011) Marine Bacterial, Archaeal and Protistan Association Networks Reveal Ecological Linkages. ISME Journal, 5, 1414-1425. http://dx.doi.org/10.1038/ismej.2011.24
|
[36]
|
Barabási, A.L. and Bonabeau, E. (2003) Scale-Free Networks. Scientific American, 288, 60-69. http://dx.doi.org/10.1038/scientificamerican0503-60
|
[37]
|
Montoya, J.M., Pimm, S.L. and Solé, R.V. (2006) Ecological Networks and Their Fragility. Nature, 442, 259-264. http://dx.doi.org/10.1038/nature04927
|