Share This Article:

Entropy and Entanglement of Moving Two Atoms in a Squeezed Field via Four-Photon Process

Abstract Full-Text HTML XML Download Download as PDF (Size:365KB) PP. 487-494
DOI: 10.4236/ns.2014.67047    2,874 Downloads   3,773 Views   Citations

ABSTRACT

In this paper, the entanglement between two atoms and squeezed field via four photon process is investigated. The dynamical behavior of the entanglement between two atoms and a squeezed field is analyzed. In particular, the effects of the atomic motion, the initial atomic state and the field squeezing are examined. A high amount of entanglement is generated by increasing the field squeezing. Furthermore, we show that a sudden death and sudden birth emerge when the moving atoms are initially prepared in the excited state.


Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Abdel-Khalek, S. and Halawani, S. (2014) Entropy and Entanglement of Moving Two Atoms in a Squeezed Field via Four-Photon Process. Natural Science, 6, 487-494. doi: 10.4236/ns.2014.67047.

References

[1] Chao, W. and Mao-Fa, F. (2010) The Entanglement of Two Moving Atoms Interacting with a Single-Mode Field via a Three-Photon Process. Chinese Physics B, 19, Article ID: 020309.
http://dx.doi.org/10.1088/1674-1056/19/2/020309
[2] Bashkirov, E.K., Sochkova, E.Y. and Litvinova, D.V. (2011) The Influence of Dipole-Dipole Interaction on the Sudden Death of Entanglement of Two Atoms with Degenerate Two-Photon Transitions. Pacific Science Review, 13, 255-259.
[3] Abdel-Khalek, S. and Obada, A.-S.F. (2009) The Atomic Wehrl Entropy of a V-Type Three-Level Atom Interacting with Two-Mode Squeezed Vacuum State. Journal of Russian Laser Research, 30, 146-156.
http://dx.doi.org/10.1007/s10946-009-9066-1
[4] Abdel-Khalek, S., Abdel-Hameed, H.F. and Abdel-Aty, M. (2011) Atomic Wehrl Entropy of a Single Qubit System. International Journal of Quantum Information, 9, 967-979.
http://dx.doi.org/10.1142/S0219749911007538
[5] Obada, A.-S.F. and Abdel-Khalek, S. (2004) New Features of the Atomic Wehrl Entropy and Its Density in Multiquanta Two-Level System. Journal of Physics A: Mathematical and General, 37, 6573.
http://dx.doi.org/10.1088/0305-4470/37/25/010
[6] López, C.E., Romero, G., Lastra, F., Solano, E. and Retamal, J.C. (2008) Sudden Birth versus Sudden Death of Entanglement in Multipartite Systems. Physical Review Letters, 101, Article ID: 080503.
http://dx.doi.org/10.1103/PhysRevLett.101.080503
[7] Gerry, C. and Knight, P. (2005) Introductory Quantum Optics. University Press, Cambridge.
[8] Ye, Y.-H., Li, Z.-J. and Zeng, G.-J. (2008) A Measure of Non-Classicality of Even and Odd Coherent States. Chinese Physics Letters, 25, 1175.
http://dx.doi.org/10.1088/0256-307X/25/4/004
[9] Wu, C. and F, M.-F. (2010) The Entanglement of Two Moving Atoms Interacting with a Single-Mode Field via a Three-Photon Process. Chinese Physics B, 19, Article ID: 020309.
http://dx.doi.org/10.1088/1674-1056/19/2/020309
[10] Abdel-Khalek, S. (2008) The Effect of Atomic Motion and Two-Quanta JCM on the Information Entropy. Physica A, 387, 779-786.
http://dx.doi.org/10.1016/j.physa.2007.09.034
[11] Bennett, C.H., Berstein, H.J., Popescu, S. and Schumacher, B. (1996) Concentrating Partial Entanglement by Local Operation. Physical Review A, 53, 2046-2052.
http://dx.doi.org/10.1103/PhysRevA.53.2046
[12] von Neumann, J. (1955) Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton.
[13] Phoenix, S.J.D. and Knight, P.L. (1988) Fluctuations and Entropy in Models of Quantum Optical Resonance. Annals of Physics (New York), 186 381-407.
http://dx.doi.org/10.1016/0003-4916(88)90006-1
[14] Braunstein, L. and Caves, C.M. (1988) Information Theoretic Bell Inequalities. Physical Review Letters, 61, 662-665.
http://dx.doi.org/10.1103/PhysRevLett.61.662
[15] Benenti, G., Casati, G. and Strini, G. (2007) Principles of Quantum Computation and Information, Volume. II: Basic Tools and Special Topics. World Scientific, Singapore City.
[16] Nielsen, M.A. and Chuang, I.L. (2010) Quantum Computation and Quantum Information. 10th Anniversary Edition, Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511976667
[17] Ekert, A. (1991) Quantum Cryptography Based on Bell’s Theorem. Physical Review Letters, 68, 661-663.
http://dx.doi.org/10.1103/PhysRevLett.67.661
[18] Cirac, J.I. and Gisin, N. (1997) Coherent Eavesdropping Strategies for the Four State Quantum Cryptography Protocol. Physics Letters A, 229, 1-7.
http://dx.doi.org/10.1016/S0375-9601(97)00176-X
[19] Fuchs, C.A., Gisin, N., Griffiths, R.B., Niu, C.-S. and Peres, A. (1997) Optimal Eavesdropping in Quantum Cryptography. I. Information Bound and Optimal Strategy. Physical Review A, 56, 1163-1172.
http://dx.doi.org/10.1103/PhysRevA.56.1163
[20] Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A. and Wootters, W.K. (1993) Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels. Physical Review Letters, 70, 1895-1899.
http://dx.doi.org/10.1103/PhysRevLett.70.1895
[21] Mozes, S., Oppenheim, J. and Reznik, B. (2005) Deterministic Dense Coding with Partial Entangled State. Physical Review A, 71, Article ID: 012311.
http://dx.doi.org/10.1103/PhysRevA.71.012311
[22] Ye, L. and Guo, C.C. (2005) Scheme for Implementing Quantum Dense Coding in Cavity QED. Physical Review A, 71, 034304.
http://dx.doi.org/10.1103/PhysRevA.71.034304
[23] Shannon, C.E. and Weaver, W. (1949) The Mathematical Theory of Cummunications. Urbana University Press, Chicago.
[24] Abdel-Khalek, S. (2007) Atomic Wehrl Entropy in a Two-Level Atom Interacting with a Cavity Field. Applied Mathematics & Information Sciences, 1, 53-64
[25] Abdel-Khalek, S., Barzanjeh, S., Eleuch, H. (2011) Entanglement Sudden Death and Sudden Birth in Semiconductor Microcavities. International Journal of Theoretical Physics, 50, 2939-2950.
http://dx.doi.org/10.1007/s10773-011-0794-y
[26] Berrada, K., Chafik, A., Eleuch, H. and Hassouni, Y. (2010) Concurrence in the Framework of Coherent States. Quantum Information Processing, 9, 13-26.
http://dx.doi.org/10.1007/s11128-009-0124-y
[27] Berrada, K., Mohammadzade, A., Abdel-Khalek, S., Eleuch, H. and Salimi, S. (2012) Nonlocal Correlations for Manifold Quantum Systems: Entanglement of Two-Spin States. Physica E: Low-dimensional Systems and Nanostructures, 45, 21-27.
http://dx.doi.org/10.1016/j.physe.2012.06.014
[28] Berrada, K., Eleuch, H. and Hassouni, Y. (2011) Asymtotic Dynamics of Quantum Discord in Open Quantum Systems. Journal of Physics B: Atomic, Molecular and Optical Physics, 44, Article ID: 145503.
http://dx.doi.org/10.1088/0953-4075/44/14/145503
[29] Obada, A.S.F. and Abdel-Khalek, S. (2010) Entanglement Evaluation with Atomic Fisher information. Physica A: Statistical Mechanics and Its Applications, 389, 891-898.
http://dx.doi.org/10.1016/j.physa.2009.09.015
[30] Obada, A.S.F., Abdel-Khalek, S. and Plastino, A. (2011) Information Quantifiers’ Description of Weak Field vs. Strong Field Dynamics for a Trapped Ion in a Laser Field. Physica A: Statistical Mechanics and Its Applications, 390, 525-533.
http://dx.doi.org/10.1016/j.physa.2010.09.003
[31] Abdel-Khalek, S. (2013) Quantum Fisher information for Moving Three-Level Atom. Quantum Information Processing, 12, 3761-3769.
http://dx.doi.org/10.1007/s11128-013-0622-9
[32] Obada, A.S.F., Abdel-Khalek, S., Berrada, K. and Shaheen, M.E. (2013) Investigations of Information Quantifiers for the Tavis-Cummings Model. Physica A: Statistical Mechanics and Its Applications, 392, 6624-6632.
http://dx.doi.org/10.1016/j.physa.2013.07.051
[33] Obada, A.S.F., Abdel-Khalek, S. and Abo-Kahla, D.A.M. (2010) New Features of Entanglement and Other Applications of a Two-Qubit System. Optics Communications, 283, 4662-4670.
http://dx.doi.org/10.1016/j.optcom.2010.06.074
[34] Kowalewska-Kudlaszyk, A., Leonski, W. and Jr, J.P. (2011) Photon-Number Entangled States Generated in Kerr Media with Optical Parametric Pumping. Physical Review A, 83, Article ID: 052326.
http://dx.doi.org/10.1103/PhysRevA.83.052326

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.