Automatic Variable Selection for Single-Index Random Effects Models with Longitudinal Data

DOI: 10.4236/ojs.2014.43022   PDF   HTML     3,272 Downloads   4,834 Views  

Abstract

We consider the problem of variable selection for the single-index random effects models with longitudinal data. An automatic variable selection procedure is developed using smooth-threshold. The proposed method shares some of the desired features of existing variable selection methods: the resulting estimator enjoys the oracle property; the proposed procedure avoids the convex optimization problem and is flexible and easy to implement. Moreover, we use the penalized weighted deviance criterion for a data-driven choice of the tuning parameters. Simulation studies are carried out to assess the performance of our method, and a real dataset is analyzed for further illustration.


Share and Cite:

Yang, S. and Xue, L. (2014) Automatic Variable Selection for Single-Index Random Effects Models with Longitudinal Data. Open Journal of Statistics, 4, 230-237. doi: 10.4236/ojs.2014.43022.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Diggle, P.J., Heagerty, P., Liang, K. and Zeger, S.L. (2002) Analysis of Longitudinal Data. 2nd Edition, Oxford University, Oxford.
[2] Pang, Z. and Xue, L.G. (2012) Estimation for the Single-Index Models with Random Effects. Computational Statistics and Data Analysis, 56, 1837-1853.
http://dx.doi.org/10.1016/j.csda.2011.11.007
[3] Yang, S.G., Xue, L.G. and Li, G.R. (2014) Simultaneous Confidence Band for Single-Index Random Effects Models with Longitudinal Data. Statistics and Probability Letters, 85, 6-14.
http://dx.doi.org/10.1016/j.spl.2013.10.014
[4] Carroll, R.J., Fan, J., Gijbels, I. and Wand, M.P. (1998) Generalized Partially Linear Single-Index Models. Journal of the American Statistical Association, 92, 477-489.
http://dx.doi.org/10.1080/01621459.1997.10474001
[5] Xia, Y., Li, W.K., Tong, H. and Zhang, D. (2004) A Goodness-Of-Fit Test for Single-Index Models. Statistica Sinica, 14, 1-39.
[6] Zhu, L.X. and Xue, L.G. (2006) Empirical Likelihood Confidence Regions in a Partially Linear Single-Index Model. Journal of the Royal Statistical Society: Series B, 68, 549-570.
http://dx.doi.org/10.1111/j.1467-9868.2006.00556.x
[7] Wang, J.L., Xue, L.G., Zhu, L.X. and Chong, Y. (2010) Estimation for a Partial-Linear Single-Index Model. Annals of Statistics, 38, 246-274.
[8] Chen, J., Gao, J. and Li, D. (2013) Estimation in a Single-Index Panel Data Models with Heterogeneous Link Functions. Econometric Reviews, 33, 928-955.
http://dx.doi.org/10.1080/07474938.2012.690687
[9] Zeger, S.L. and Diggle, P.J. (1994) Semiparametric Models for Longitudinal Data with Application to CD4 Cell Numbers in HIV Seroconverters. Biometrics, 50, 689-699.
http://dx.doi.org/10.2307/2532783
[10] Ke, C.L. and Wang, Y.D. (2001) Semiparametric Nonlinear Mixed-Effects Models and Their Applications (with Discussion). Journal of the American Statistical Association, 96, 1272-1298.
http://dx.doi.org/10.1198/016214501753381913
[11] Wu, H.L. and Zhang, J.T. (2002). Local Polynomial Mixed-Effects Models for Longitudinal Data. Journal of the American Statistical Association, 97, 883-897.
http://dx.doi.org/10.1198/016214502388618672
[12] Field, C.A., Pang, Z. and Welsh, A.H. (2008) Bootstrapping Data with Multiple Levels of Variation. Canadian Journal of Statistics, 36, 521-539.
http://dx.doi.org/10.1002/cjs.5550360403
[13] Frank, I.E. and Friedman, J.H. (1993) A Statistical View of Some Chemometrics Regression Tools. Technometrics, 35, 109-148.
http://dx.doi.org/10.1080/00401706.1993.10485033
[14] Tibshirani, R. (1996) Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society: Series B, 58, 267-288.
[15] Zou, H. and Hastie, T. (2005) Regularization and Variable Selection via the Elastic Net. Journal of the Royal Statistical Society: Series B, 67, 301-320.
http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x
[16] Zou, H. (2006) The Adaptive Lasso and Its Oracle Properties. Journal of the American Statistical Association, 101, 1418-1429.
http://dx.doi.org/10.1198/016214506000000735
[17] Fan, J.Q. and Li, R.Z. (2001) Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties. Journal of the American Statistical Association, 96, 1348-1360.
http://dx.doi.org/10.1198/016214501753382273
[18] Ueki, M. (2009) A Note on Automatic Variable Selection Using Smooth-Threshold Estimating Equations. Biometrika, 96, 1005-1011.
http://dx.doi.org/10.1093/biomet/asp060
[19] Li, G.R., Lian, H., Feng, S.Y. and Zhu, L.X. (2013) Automatic Variable Selection for Longitudinal Generalized Linear Models. Computational Statistics and Data Analysis, 61, 174-186.
http://dx.doi.org/10.1016/j.csda.2012.12.015
[20] Fan, J. and Gijbels, I. (1996) Local Polynomial Modeling and Its Applications. Chapman & Hall, London.
[21] Liang, K.Y. and Zeger, S.L. (1986) Longitudinal Data Analysis Using Generalized Linear Models. Biometrika, 73, 13-22.
http://dx.doi.org/10.1093/biomet/73.1.13
[22] Thall, P. and Vail, S.C. (1990) Some Covariance Models for Longitudinal Count Data with Over Dispersion. Biometrics, 46, 657-671.
http://dx.doi.org/10.2307/2532086
[23] Bai, Y., Fung, W.K. and Zhu, Z.Y. (2009) Penalized Quadratic Inference Functions for Single-Index Models with Longitudinal Data. Journal of Multivariate Analysis, 100, 152-161.
http://dx.doi.org/10.1016/j.jmva.2008.04.004

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.