[1]
|
Kashiwagi, M. (1999) An Eigensolution Method for Solving the Largest or Smallest Eigenpair by the Conjugate Gradient Method. Transactions of JSCES, 1, 1-5.
|
[2]
|
Kashiwagi, M. (2009) A Method for Determining Intermediate Eigensolution of Sparse and Symmetric Matrices by the Double Shifted Inverse Power Method. Transactions of JSIAM, 19, 23-38.
|
[3]
|
Kashiwagi, M. (2008) A Method for Determining Eigensolutions of Large, Sparse, Symmetric Matrices by the Preconditioned Conjugate Gradient Method in the Generalized Eigenvalue Problem. Journal of Structural Engineering, 73, 1209-1217.
|
[4]
|
Kashiwagi, M. (2011) A Method for Determining Intermediate Eigenpairs of Sparse Symmetric Matrices by Lanczos and Shifted Inverse Power Method in Generalized Eigenvalue Problems. Journal of Structural and Construction Engineering: Transactions of AIJ, 76, 1181-1188. http://dx.doi.org/10.3130/aijs.76.1181
|
[5]
|
Kashiwagi, M. (2013) Derivative of a Determinant with Respect to an Eigenvalue in the LDU Decomposition of a Non-Symmetric Matrix. Applied Mathematics, 4, 464-468. http://dx.doi.org/10.4236/am.2013.43069
|
[6]
|
Bathe, K.J. (1982) Finite Element Procedures in Engineering Anaysis, Prentice-Hall, Englewood Cliffs, Nj.
|
[7]
|
Fujii, F. and Choong, K.K. (1992) Branch Switching in Bifurcation of Structures. Journal of Engineering Mechanics. 118, 1578-1596. http://dx.doi.org/10.1061/(ASCE)0733-9399(1992)118:8(1578)
|
[8]
|
Richrd, R.M. and Abotto, B.J. (1975) Versatile Elastic-Plastic Stress-Strain Formula. Journal of Engineering Mechanics. 101, 511-515.
|