Electrical Analysis of Indium Deep Levels Effects on Kink Phenomena of Silicon NMOSFETs


Several methods of characterization of trap levels like I-V, C-V and transient spectroscopy (DLTS) were used to determine the accurate values of the activation energies of traps present in N+P junctions obtained after retrograde profile implantation of indium and boron on silicon. Four main traps located at Ev + 0.15 eV, Ev + 0.21 eV, Ev + 0.28 eV and Ev + 0.46 eV are reported. Shallow levels are also calculated from I-V characteristics. Concurrently, indium channel doped NMOSFETs are investigated showing the kink phenomenon. In order to discuss the relationship between the kink effect and the active indium trap level situated at 0.16 eV, the transient effects are studied by varying the integration time and the temperature. The effects of substrate polarization are also carried out showing the reduction of the kink with the bulk positive polarization.

Share and Cite:

Fargi, A. , Hizem, N. , Kalboussi, A. and Souifi, A. (2014) Electrical Analysis of Indium Deep Levels Effects on Kink Phenomena of Silicon NMOSFETs. World Journal of Nano Science and Engineering, 4, 7-15. doi: 10.4236/wjnse.2014.41002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] De, I. and Osburn, C.M. (1999) Impact of Super-Steep-Retrograde Channel Doping Profiles on the Performance of Scaled Devices. IEEE Transactions on Electronic Devices, 46, 1711-1717. http://dx.doi.org/10.1109/16.77716
[2] Skotnicki, T., Guérin, L., Mathiot, D., Gauneau, M., Grouillet, A., D’Anterroches, C., André, E., Bouillon, P. and Haond, M. (1994) Channel Engineering by Heavy Ion Implants. 24th ESSDRC, 94, 671-674.
[3] Ong, S.Y., Chor, E.F., Leung, Y.K., Lee, J., Li, W.S., See, A. and Chan, L. (2002) Steep Retrograde Indium Channel Profiling for High Performance nMOSFETs Device Fabrication. Microelectronics Journal, 33, 55-60.
[4] Martinot, H. and Rossel, P. (1971) Carrier Multiplication in the Pinchoff Region of m.o.s. Transistors. Electronics Letters, 7, 118-120.
[5] Ben Salem, M., Bouzgarrou, S., Sghaier, N., Kalboussi, A. and Souifi, A. (2006) Correlation between Static Characteristics and Deep Levels in InAlAs/InGaAs/InP HEMT’S. Materials Science and Engeineering B, 127, 34-40.
[6] Zaman, S. and Parker, A. (2007) Impact Ionization Dependence of Hole Trapping Phenomena in Hemts. Journal of Science and Technology, 2, 8-12.
[7] Horio, K., Wakabayashi, A. and Yamada, T. (2000) Two-Dimensional Analysis of Substrate-Trap Effects on Turn-On Characteristics in GaAs MESFETs. IEEE Transactions on Electronic Devices, 47, 2270-2276. http://dx.doi.org/10.1109/16.824738
[8] Lançon, R. and Marfaing, Y. (1969) Mécanisme de génération-recombinaison dans les jonctions p-n de tellurure de cadmium. Le Journal de Physique, 30, 97-102.
[9] Cerofolini, G.F., Pignatel, G.U., Mazzega, E. and Ottaviani, G. (1985) Supershallow Levels in Indium-Doped Silicon. Journal of Applied Physics, 58, 2204-2207.
[10] Jones, C.E. and Johnson, G.E. (1981) Deep Level Transient Spectroscopy Studies of Trapping Parameters Forcenters in Indium-Doped Silicon. Journal of Applied Physics, 52 5159-5163. http://dx.doi.org/10.1063/1.329416
[11] Parker, G.J., Brotherton, S.D., Gale, I. and Gill, A. (1983) Measurement of Concentration and Photoionization Cross Section of Indium in Silicon. Journal of Applied Physics, 54, 3926-3929. http://dx.doi.org/10.1063/1.332566
[12] Nakahara, M., Iwasawa, H. and Yasutake, K. (1968) Anomalous Enhancement of Substrate Terminal Current beyond Pinch-Off in Silicon N-Channel MOS Transistors and Its Related Phenomena. Proceedings of IEEE, 56, 2088-2090.
[13] Choi, J.Y. and Fossum, J.G. (1991) Analysis and Control of Floating-Body Bipolar Effects in Fully Depleted Submicrometer SOI MOSFET’s. IEEE Transactions on Electronic Devices, 38, 1384-1391. http://dx.doi.org/10.1109/16.81630
[14] Valdinoci, M., Colalongo, L., Baccarani, G., Fortunato, G., Pecora, A. and Policicchio, I. (1997) Floating Body Effects in Polysilicon Thin-Film Transistors. IEEE Transactions on Electronic Devices, 44, 2234-2241.
[15] Canali, C., Paccagnella, A., Pisoni, P., Tedesco, C., Telaroli, P. and Zanoni, E. (1991) Impact Ionization Phenomena in AlGaAs/GaAs HEMTs. IEEE Transactions on Electronic Devices, 38, 2571-2573. http://dx.doi.org/10.1109/16.97428
[16] Hori, Y. and Kuzuhara, M. (1994) Improved Model for Kink Effect in AlGaAs/InGaAs Heterojunction FET’s. IEEE Transactions on Electronic Devices, 41, 2262-2267.
[17] Suemitsu, T., Enoki, T., Sano, N., Tomizawa, M. and Ishii, Y. (1998) An Analysis of the Kink Phenomena in InAlAs/InGaAs HEMT’s Using Two-Dimensional Device Simulation. IEEE Transactions on Electronic Devices, 45, 2390-2399.
[18] Bouzgarrou, S., Sghaier, Na., Ben Salem, M., Souifi, A. and Kalboussi, A. (2008) Influence of Interface States and Deep Levels on Output Characteristics of InAlAs/InGaAs/InP HEMTs. Materials Science and Engineering C, 28, 676-679.
[19] Sornerville, M.H., Del Alamom J,A. and Hoke, W. (1996) Direct Correlation between Impact Ionization and the Kink Effect in InAlAs/InGaAs HEMTs. IEEE Electron Device Letters, 17, 473-475. http://dx.doi.org/10.1109/55.537079
[20] Hafez, I.M., Ghibaudo, G. and Balestra, F. (1990) Reduction of Kink Effect in Short-Channel MOS Transistors. IEEE Electron Device Letters, 11, 818-821.
[21] Chen, S.S., Lin, S.C. and Kuo, J.B. (1996) Kink Effect on Subthreshold Current Conduction Mechanism for N-Channel Metal-Oxide-Silicon Devices. Journal of Applied Physics, 80, 5821-5827. http://dx.doi.org/10.1063/1.363729
[22] Huang, C. and Gildenblat, S. (1990) Measurements and Modeling of the N-Channel MOSFET Inversion Layer Mobility and Device Characteristics in the Temperature Range 60-300 K. IEEE Transactions on Electronic Devices, 37, 1289-1300.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.