Simplified Life Cycle Analysis: A Rural School in La Pampa, Argentina


This study case is a rural school in La Pampa, Argentina, where we compare two energy efficiency systems for construction: the local traditional building type and a proposed one, based on passive system design during its life cycle. In addition, we assume that savings of emissions of greenhouse-gases are valued in terms of Argentina’s energy matrix. The efficiency, in terms of energy, involves the consumption for its manufacture (extraction, transport and assembly of materials), construction, maintenance and dismantling, recycling and final disposal of waste. Knowing this information at the preliminary stage can be advantageous to evaluate the selected materials in terms of energy and cost savings to amortize its value over the life cycle, and introduce other types of design. At present, there are significant problems of resource scarcity. The implementation of the analysis of life cycle (LC) should be a significant contribution in the field of construction in reference to awareness about energy conservation and efficiency, and therefore contributing to the sustainable development of societies.

Share and Cite:

Marcilese, M. and Czajkowski, J. (2014) Simplified Life Cycle Analysis: A Rural School in La Pampa, Argentina. American Journal of Climate Change, 3, 22-32. doi: 10.4236/ajcc.2014.31003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Peris Mora, E. (2007) Life Cycle, Sustainability and the Transcendent Quality of Building Materials. Building and Environment, 42, 1329-1334.
[2] Arena, P., del Ciclo de Vida del Edificio, A. and de los Edificios, S.A. (2005) Experiencias en Argentina. Laboratorio de Ambiente Humano y Vivienda, Mendoza.
[3] Filippin, C. (2005) Termal Response of Solar and Conventional School Building to Design-and Human-Driven Factors. Renewable Energy, 30, 353-376.
[4] Rosenfeld, E., Díscoli, C. and Romero, F. (1977) Edificios. Inteligentes. Argentina.
[5] Rogner, H.-H., Zhou, D., Bradley, R., Crabbé, P., Edenhofer, O., Hare, B., Kuijpers, L. and Yamaguchi, M. (2007) Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York.
[6] IOS (2006) ISO14040:2006 Environmental Management. Life Cycle Assessment. Life Cycle Interpretation. International Organization for Standardization.
[7] Arena, P. and De Rosa, C. (2003) Life Cycle Assessment of Energy and Environmental Implications of the Implementation of Conservation Technologies in School Buildings in Mendoza—Argentina. Building and Environment. The International Journal of Building Science and Its Applications, 38, 359-368.
[8] Nemry, F., Auihleina, A., Colodel, C., Wetzel, C., Braune, A., Wittstock, B., Hasanc, I., Kreißig, J., Gallond, N., Niemeier, S. and Frechc, Y. (2010) Options to Reduce the Environmental Impacts of Residential Buildings in the European Union—Potential and Costs. Energy and Buildings, 42, 976-984.
[9] Czajkowski, J. (1999) Programa AuditCad para el Análisis del Comportamiento Energético Edilicio Basado en Auditorías Energéticas y de Confort. V Encontro de Conforto no Ambiente Construido, Fortaleza, 6 p.
[10] Dylewski, R. nd Adamczyk, J. (2011) Economic and Environmental Benefits of Thermal Insulation of Building Externals Walls. Building and Environment. The International Journal of Building Science and Its Applications, 46, 2615-2623.
[11] Utamaa, A. and Gheewala, S.H. (2008) Life Cycle Energy of Single Landed Houses in Indonesia. Energy and Buildings, 40, 1911-1916.
[12] Marcilese, M. and Czajkowski, J. (2009) Pautas de Diseño Ambientalmente Consciente para Escuela rural en Microclima Platense. Avances en Energías Renovables y Medio Ambiente, 13, Impreso en la Argentina.
[13] Czajkowski, J. and Gómez, A. (2009) Arquitectura Sustentable. Editorial Clarín.
[14] Gonzalez, A., Juanicó, L. and Gortari, S. (2008) High-Efficiency Prototypes of Commercial Gas Heaters Extensively Used in Argentina. Science Direct. International Journal of Hydrogen Energy 33, 3471-3474.
[15] (1999) Instituto para la Diversificación y Ahorro de la Energía IDAE, Ministerio de Fomento y Fundación Privada Institut Ildefons Cerdá. Guía de Edificación Sostenible. Calidad Energética y Medioambiental en Edificación.
[16] Edwards, B. (2005) Guía Básicos de la Sostenibilidad. Gustavo Gili, Barcelona.
[17] Gonzalez, A. (2010) Comparación de Energías y Gases de efecto Invernadero en Calentamiento de agua para Cocción de Alimentos con Electricidad y Gas Natural. Avances en Energías Renovables y Medio Ambiente, ASADES.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.