The Detectability for the Myocardial Fibrosis by Tagging Imaging on Cardiovascular Magnetic Resonance


Purpose: Myocardial fibrosis causes cardiac dysfunction, arrhythmias, and sudden death. Tagging imaging on cardiovascular MR can measure the intra-myocardial motion from the dynamic deformation of lines superimposed on the myocardium. The purpose of this study was to evaluate the detectability of myocardial fibrosis using tagging imaging and to compare this with conventional cine imaging. Materials and Methods: We reviewed 4 normal control (NML) subjects, 4 patients with myocarditis (MYO), and 4 patients with old myocardial infarction (ICM). We measured circumferential strain (Ecc) from tagging imaging, and regional wall thickening (rWT) from cine imaging. Fibrosis was determined from a late gadolinium enhancement (LGE) image. We evaluate diagnostic performance by comparing values of the area under curve (AUC) using ROC analysis. Results: Mean values of Ecc and rWT decreased in the area of LGE both in MYO and ICM patients. AUC values of Ecc and rWT in all subjects were 0.98 and 0.84, respectively (p < 0.0001). These values in MYO patients were 0.95 and 0.72 (p = 0.007), respectively, and 0.99 and 0.75, respectively, in ICM patients (p = 0.0008). Conclusions: Both Ecc and rWT decreased in the area with fibrosis in the patients with MYO and ICM. Tagging imaging showed better detectability of myocardial fibrosis than did cine imaging.

Share and Cite:

Kono, A. , Croisille, P. , Nishii, T. , Kyotani, K. , Nishiyama, K. , Shigeru, M. , Takamine, S. , Fujiwara, S. and Sugimura, K. (2014) The Detectability for the Myocardial Fibrosis by Tagging Imaging on Cardiovascular Magnetic Resonance. Open Journal of Radiology, 4, 1-8. doi: 10.4236/ojrad.2014.41001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Ichikawa, Y., Sakuma, H., Kitagawa, K., Ishida, N., Takeda, K., Uemura, S., Motoyasu, M., Nakano, T. and Nozaki, A. (2003) Evaluation of Left Ventricular Volumes and Ejection Fraction Using Fast Steady-State Cine MR Imaging: Comparison with Left Ventricular Angiography. Journal of Cardiovascular Magnetic Resonance, 5, 333-342.
[2] Bavelaar-Croon, C.D., Kayser, H.W., van der Wall, E.E., de Roos, A., Dibbets-Schneider, P., Pauwels, E.K., Germano, G. and Atsma, D.E. (2000) Left Ventricular Function: Correlation of Quantitative Gated SPECT and MR Imaging over a Wide Range of Values. Radiology, 217, 572-575.
[3] Grothues, F., Smith, G.C., Moon, J.C., Bellenger, N.G., Collins, P., Klein, H.U. and Pennell, D.J. (2002) Comparison of Interstudy Reproducibility of Cardiovascular Magnetic Resonance with Two-Dimensional Echocardiography in Normal Subjects and in Patients with Heart Failure or Left Ventricular Hypertrophy. American Journal of Cardiology, 90, 29-34.
[4] Pouleur, A.C., le Polain de Waroux, J.B., Pasquet, A., Gerber, B.L., Gerard, O., Allain, P. and Vanoverschelde, J.L. (2008) Assessment of Left Ventricular Mass and Volumes by Three-Dimensional Echocardiography in Patients with or without Wall Motion Abnormalities: Comparison against Cine Magnetic Resonance Imaging. Heart, 94, 1050-1057.
[5] Moore, C.C., McVeigh, E.R. and Zerhouni, E.A. (2000) Quantitative Tagged Magnetic Resonance Imaging of the Normal Human Left Ventricle. Topics in Magnetic Resonance Imaging, 11, 359-371.
[6] Zerhouni, E.A., Parish, D.M., Rogers, W.J., Yang, A. and Shapiro, E.P. (1988) Human Heart: Tagging with MR Imaging—A Method for Noninvasive Assessment of Myocardial Motion. Radiology, 169, 59-63.
[7] Croisille, P., Moore, C.C., Judd, R.M., Lima, J.A., Arai, M., McVeigh, E.R., Becker, L.C. and Zerhouni, E.A. (1999) Differentiation of Viable and Nonviable Myocardium by the Use of Three-Dimensional Tagged MRI in 2-Day-Old Reperfused Canine Infarcts. Circulation, 99, 284-291.
[8] Gotte, M.J., van Rossum, A.C., Twisk, J.W.R., Kuijer, J.P.A., Marcus, J.T. and Visser, C.A. (2001) Quantification of Regional Contractile Function after Infarction: Strain Analysis Superior to Wall Thickening Analysis in Discriminating Infarct from Remote Myocardium. Journal of the American College of Cardiology, 37, 808-817.
[9] Kuijpers, D., Ho, K.Y., van Dijkman, P.R., Vliegenthart, R. and Oudkerk, M. (2003) Dobutamine Cardiovascular Magnetic Resonance for the Detection of Myocardial Ischemia with the Use of Myocardial Tagging. Circulation, 107, 1592-1597.
[10] Goldman, M.R., Brady, T.J., Pykett, I.L., Burt, C.T., Buonanno, F.S., Kistler, J.P., Newhouse, J.H., Hinshaw, W.S. and Pohost, G.M. (1982) Quantification of Experimental Myocardial Infarction Using Nuclear Magnetic Resonance Imaging and Paramagnetic Ion Contrast Enhancement in Excised Canine Hearts. Circulation, 66, 1012-1016.
[11] Arts, T., Prinzen, F.W., Delhaas, T., Milles, J.R., Rossi, A.C. and Clarysse, P. (2010) Mapping Displacement and Deformation of the Heart with Local Sine-Wave Modeling. IEEE Transactions on Medical Imaging, 29, 1114-1123.
[12] Axel, L. and Dougherty, L. (1989) Heart Wall Motion: Improved Method of Spatial Modulation of Magnetization for MR Imaging. Radiology, 172, 349-350.
[13] Castillo, E., Lima, J.A. and Bluemke, D.A. (2003) Regional Myocardial Function: Advances in MR Imaging and Analysis. Radiographics, 23, S127-S140.
[14] Gruszczynska, K., Kirschbaum, S., Baks, T., Moelker, A., Duncker, D.J., Rossi, A., Baron, J., de Feyter, P.J., Krestin, G.P. and van Geuns, R.J. (2011) Different Algorithms for Quantitative Analysis of Myocardial Infarction with DE MRI: Comparison with Autopsy Specimen Measurements. Academic Radiology, 18, 1529-1536.
[15] Haendchen, R.V., Wyatt, H.L., Maurer, G., Zwehl, W., Bear, M., Meerbaum, S. and Corday, E. (1983) Quantitation of Regional Cardiac Function by Two-Dimensional Echocardiography. I. Patterns of Contraction in the Normal Left Ventricle. Circulation, 67, 1234-1245.
[16] Lieberman, A.N., Weiss, J.L., Jugdutt, B.I., Becker, L.C., Bulkley, B.H., Garrison, J.G., Hutchins, G.M., Kallman, C.A. and Weisfeldt, M.L. (1981) Two-Dimensional Echocardiography and Infarct Size: Relationship of Regional Wall Motion and Thickening to the Extent of Myocardial Infarction in the Dog. Circulation, 63, 739-746.
[17] Jeung, M.Y., Germain, P., Croisille, P., El Ghannudi, S., Roy, C. and Gangi, A. (2012) Myocardial Tagging with MR Imaging: Overview of Normal and Pathologic Findings. Radiographics, 32, 1381-1398.
[18] Smedema, J.P., Snoep, G., van Kroonenburgh, M.P., van Geuns, R.J., Dassen, W.R., Gorgels, A.P. and Crijns, H.J. (2005) Evaluation of the Accuracy of Gadolinium-Enhanced Cardiovascular Magnetic Resonance in the Diagnosis of Cardiac Sarcoidosis. Journal of the American College of Cardiology, 45, 1683-1690.
[19] Karamitsos, T.D., Francis, J.M., Myerson, S., Selvanayagam, J.B. and Neubauer, S. (2009) The Role of Cardiovascular Magnetic Resonance Imaging in Heart Failure. Journal of the American College of Cardiology, 54, 1407-1424.
[20] Myers, J.H., Stirling, M.C., Choy, M., Buda, A.J. and Gallagher, K.P. (1986) Direct Measurement of Inner and Outer Wall Thickening Dynamics with Epicardial Echocardiography. Circulation, 74, 164-172.
[21] Oyama-Manabe, N., Ishimori, N., Sugimori, H., Van Cauteren, M., Kudo, K., Manabe, O., Okuaki, T., Kamishima, T., Ito, Y.M., Tsutsui, H., Tha, K.K., Terae, S. and Shirato, H. (2011) Identification and Further Differentiation of Subendocardial and Transmural Myocardial Infarction by Fast Strain-Encoded (SENC) Magnetic Resonance Imaging at 3.0 Tesla. European Radiology, 21, 2362-2368.
[22] Mahrholdt, H., Goedecke, C., Wagner, A., Meinhardt, G., Athanasiadis, A., Vogelsberg, H., Fritz, P., Klingel, K., Kandolf, R. and Sechtem, U. (2004) Cardiovascular Magnetic Resonance Assessment of Human Myocarditis: A Comparison to Histology and Molecular Pathology. Circulation, 109, 1250-1258.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.