Share This Article:

Construction and Application of Subdivision Surface Scheme Using Lagrange Interpolation Polynomial

Abstract Full-Text HTML XML Download Download as PDF (Size:375KB) PP. 387-397
DOI: 10.4236/am.2014.53040    3,391 Downloads   5,019 Views  

ABSTRACT

This paper offers a general formula for surface subdivision rules for quad meshes by using 2-D Lagrange interpolating polynomial [1]. We also see that the result obtained is equivalent to the tensor product of (2N + 4)-point n-ary interpolating curve scheme for N ≥ 0 and n ≥ 2. The simple interpolatory subdivision scheme for quadrilateral nets with arbitrary topology is presented by L. Kobbelt [2], which can be directly calculated from the proposed formula. Furthermore, some characteristics and applications of the proposed work are also discussed.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

F. Khan, N. Batool and I. Mukhtar, "Construction and Application of Subdivision Surface Scheme Using Lagrange Interpolation Polynomial," Applied Mathematics, Vol. 5 No. 3, 2014, pp. 387-397. doi: 10.4236/am.2014.53040.

References

[1] G. Dahlquist and A. Bjork, “Numerical Methods in Scientific Computing,” SIAM, Vol. 1, 2008.
http://dx.doi.org/10.1137/1.9780898717785
[2] L. Kobbelt, “Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology,” Computer Graphics Forum, Vol. 15, No. 3, 1996, pp. 409-420. http://dx.doi.org/10.1111/1467-8659.1530409
[3] J. A. Lian, “On A-Ary Subdivision for Curve Design: 4-Point and 6-Point Inerpolatory Schemes,” Application and Applied Mathematics: International Journal, Vol. 3, No. 1, 2008, pp. 18-29.
[4] J. A. Lian, “On A-Ary Subdivision for Curve Design. II. $3$-Point and $5$-Point Interpolatory Schemes,” Applications and Applied Mathematics: International Journal, Vol. 3, No. 2, 2008, pp. 176-187.
[5] J. A. Lian, “On A-Ary Subdivision for Curve Design. III. 2m-Point and (2m+1)-Point Interpolatory Schemes,” Applications and Applied Mathematics: International Journal, Vol. 4, No. 2, 2009, pp. 434-444.
[6] K. P. Ko, “A Study on Subdivision Scheme-Draft,” Dongseo University Busan South Korea, 2007.
http://kowon.dongseo.ac.kr/$\sim$kpko/publication/2004book.pdf
[7] G. Mustafa and A. R. Najma, “The Mask of (2b+4)-Point n-Ary Subdivision Scheme,” Computing, Vol. 90, No. 1-2, 2010, pp. 1-14.
[8] M. Sabin, “Eigenanalysis and Artifacts of Subdivision Curves and Surfaces,” In: A. Iske, E. Quak and M. S. Floater, Eds., Tutorials on Multiresolution in Geometric Modelling, Chapter 4, Springer, Berlin, 2002, pp. 51-68.
[9] N. A. Dodgson, U. H. Augsdorfer, T. J. Cashman and M. A. Sabin, “Deriving Box-Spline Subdivision Schemes,” Springer-Verlag, Berlin, 2009, pp. 106-123.
[10] N. Dyn, D. Levin and J. Gregory, “A 4-Point Interpolatory Subdivision Scheme for Curve Design,” Computer Aided Geometric Design, Vol. 4, No. 4, 1987, pp. 257-268. http://dx.doi.org/10.1016/0167-8396(87)90001-X

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.