[1]
|
A. H. Reddi, “Morphogenesis and Tissue Engineering of Bone and Cartilage: Inductive Signals, Stem Cells, and Biomimetic Biomaterials,” Tissue Engineering, Vol. 6, No. 4, 2000, pp. 351-359. http://dx.doi.org/10.1089/107632700418074
|
[2]
|
G. Keller, “Embryonic Stem Cell Differentiation: Emergence of a New Era in Biology and Medicine,” Genes & Development, Vol. 19, No. 10, 2005, pp. 1129-1155. doi: 10. 1101/gad.1303605
|
[3]
|
T. L. Charest, M. T. Eliason, A. J. Garcia and W. P. King, “Combined Microscale Mechanical Topography and Chemical Patterns on Polymer Cell Culture Substrates,” Biomaterials, Vol. 27, No. 11, 2006, pp. 2487-2494. doi: 10. 1016/j.biomaterials.2005.11.022
|
[4]
|
S. Taqvi and K. Roy, “Influence of Scaffold Physical Properties and Stromal Cell Coculture on Hematopoietic Differentiation of Mouse Embryonic Stem Cells,” Biomaterials, Vol. 27, No. 36, 2006, pp. 6024-6031. http://dx.doi.org/10.1016/j.biomaterials.2006.05.052
|
[5]
|
N. S. Hwang, S. Varghese and J. Elisseeff, “Controlled Differentiation of Stem Cells,” Advanced Drug Delivery Reviews, Vol. 60, No. 2, 2008, pp. 119-214. doi: 10. 1016/j.addr.2007.08.036
|
[6]
|
A. Khademhosseini, R. Langer, J. Borenstein and J. P. Vacanti, “Microscale Technologies for Tissue Engineering and Biology,” Proceedings of the National Academy of Sciences, Vol. 103, No. 8, 2006, pp. 2480-2487. doi: 10. 1073/pnas.0507681102
|
[7]
|
S. Levenberg, N. F. Huang, E. Lavik, A. B. Rogers, J. Itskoviz-Eldor and R. Langer, “Differentiation of Human Embryonic Stem Cells on Three-Dimensional Polymer Scaffolds,” Proceedings of the National Academy of Sciences, Vol. 100, No. 22, 2003, pp. 12741-12746. doi: 10. 1073/pnas.1735463100
|
[8]
|
S. Battista, D. Guarnieri, C. Borselli, S. Zeppetelli, A. Borzacchiello, L. Mayol, D. Gerbasio, D. R. Keene, L. Ambrosio and P. A. Netti, “The Effect of Matrix Composition of 3D Constructs on Embryonic Stem Cell Differentiation,” Biomaterials, Vol. 26, No. 31, 2005, pp. 6194-6207.
|
[9]
|
S. Yang, K. Leong, Z. Du and C. Chua, “The Design of Scaffolds for Use in Tissue Engineering Part I. Traditional Factors,” Tissue Engineering, Vol. 7, No. 6, 2001, pp. 679-689. http://dx.doi.org/10.1089/107632701753337645
|
[10]
|
J. L. Charest, L. E. Bryant, A. J. Garcia and W. P. King, “Hot Embossing for Micropatterned Cell Substrates,” Biomaterials, Vol. 25, No. 19, 2004, pp. 4767-4775. http://dx.doi.org/10.1016/j.biomaterials.2003.12.011
|
[11]
|
A. Noghero, F. Bussolino and A. Gualandris, “Role of the Microenvironment in The Specification of Endothelial Progenitors Derived from Embryonic Stem Cells,” Microvascular Research, Vol. 79, No. 3, 2010, pp. 178-183. http://dx.doi.org/10.1016/j.mvr.2009.12.008
|
[12]
|
A. I. Caplan, “Mesenchymal Stem Cells,” Journal of Orthopaedic Research, Vol. 9, No. 5, 1991, pp. 641-650. http://dx.doi.org/10.1002/jor.1100090504
|
[13]
|
D. J. Prockop, “Marrow Stromal Cells as Stem Cells for Nonhematopoietic Tissues,” Science, Vol. 276, No. 71, 1997, pp. 71-74. http://dx.doi.org/10.1126/science.276.5309.71
|
[14]
|
M. A. Vodyanik, J. A. Bork, J. A. Thomson and I. I. Slukvin, “Human Embryonic Stem Cell-Derived CD34+ Cells: Efficient Production in the Coculture with OP9 Stromal Cells and Analysis of Lymphohematopoietic Potential,” Blood, Vol. 105, No. 2, 2005, pp. 617-626. http://dx.doi.org/10.1182/blood-2004-04-1649
|
[15]
|
P. Trivedi and P. Hematti, “Simultaneous Generation of CD34+ Primitive Hematopoietic Cells and CD73+ Mesenchymal Stem Cells from Human Embryonic Stem Cells Cocultured with Murine OP9 Stromal Cells,” Experimental Hematology, Vol. 35, No. 1, 2007, pp. 146-154. http://dx.doi.org/10.1016/j.exphem.2006.09.003
|
[16]
|
S. T. Fraser, J. Yamashita, L. M. Jakt, M. Okada, M. Ogawa, S. Nishikawa and S. Nishikawa, “In Vitro Differentiation of Mouse Embryonic Stem Cells: Hematopoietic and Vascular Cell Types,” Methods in Enzymology, Vol. 365, 2003, pp. 60-72. http://dx.doi.org/10.1016/S0076-6879(03)65004-4
|
[17]
|
K. Kitajima, M. Tanaka, J. Zheng, E. Sakai-Ogawa and T. Nakano, “In Vitro Differentiation of Mouse Embryonic Stem Cells to Hematopoietic Cells on an OP9 Stromal Cell Monolayer,” Methods in Enzymology, Vol. 365, 2003, pp. 73-83. http://dx.doi.org/10.1016/S0076-6879(03)65005-6
|
[18]
|
H. Komatsuzaki, K. Suzuki, Y. Liu, T. Kosugi, R. Ikoma, S.-W. Youn, M. Takahashi, R. Maeda and Y. Nishioka, “Flexible Polymide Micropump Fabricated Using Hot Embossing,” Japanese Journal of Applied Physics, Vol. 50, 2011, Article ID: 06GM09. http://dx.doi.org/10.1143/JJAP.50.06GM09
|
[19]
|
R. Ikoma, H. Komatsuzaki, K. Suzuki, T. Komori, K. Kuroda, H. Saitou, S.-W Youn, H. Hiroshima, M. Takahashi, R. Maeda and Y. Nishioka, “Transfer of Relatively Large Microstructures on Polyimide Films using Thermal Nanoimprinting,” Journal of Photopolymer Science and Technology, Vol. 25, No. 2, 2012, pp. 255-260. http://dx.doi.org/10.2494/photopolymer.25.255
|
[20]
|
R. Ikoma, H. Komatsuzaki, T. Komori, K. Kuroda, H. Saito and Y. Nishioka, “Valveless Micropumps with Dual Polyimide Diaphragms,” Applied Mechanics and Materials, Vol. 300-301, 2013, pp. 1364-1367. http://dx.doi.org/10.4028/www.scientific.net/AMM.300-301.1364
|
[21]
|
H. Saito, H. Komatsuzaki, R. Ikoma, T. Komori, K. Kuroda, Y. Kimura, Y. Fukushi, H. Maenosono, S. Koide, M. Satano and Y. Nishioka, “Electroosmotic Flow Pump on Transparent Polyimide Substrate Fabricated Using Hot Embossing,” Applied Mechanics and Materials, Vol. 300-301, 2013, pp. 1360-1363. http://dx.doi.org/10.4028/www.scientific.net/AMM.300-301.1356
|
[22]
|
T. Komori, T. Kosugi, K. Kuroda, H. Saito, Y. Kimura, Y. Fukushi, H. Maenosono, S. Koide, M. Satano, R. Ikoma and Y. Nishioka, “Transfer Printing of Au Micropatterns on Polyimide Films, Journal of Photopolymer Science and Technology, Vol. 26, No. 3, 2013, pp. 309-312. http://dx.doi.org/10.2494/photopolymer.26.309
|
[23]
|
Y. Fukushi, S. Koide, R. Koma, W. Akatsuka, S. Tsujimura and Y. Nishioka, “Fabrication and Characterization of Glucose Fuel Cells with Microchannels Fabricated on Flexible Polyimide Film,” Journal of Photopolymer Science and Technology, Vol. 26, 2013, pp. 303-308. http://dx.doi.org/10.2494/photopolymer.26.303
|
[24]
|
Product Name: Neopulim L. Mitsubishi Gas Chemical Company, INC., Tokyo, Japan, 2013. http://www.mgc.co.jp/eng/index.html
|
[25]
|
I. M. Herman, N. J. Crisona and T. D. Pollard, “Relation between Cell Activity and the Distribution of Cytoplasmic Actin and Myosin,” The Journal of Cell Biology, Vol. 90, No. 1, 1981, pp. 84-91. http://dx.doi.org/10.1083/jcb.90.1.84
|
[26]
|
L. B. Buravkova, Y. A. Romanov, N. A. Konstantinova, S. V. Buravkov, Y. G. Gershovich and I. A. Grivennikov, “Cultured Stem Cells Are Sensitive to Gravity Changes,” Acta Astronautica, Vol. 63, No. 5-6, 2008, pp. 603-608.
|
[27]
|
W. M. Saltzman, “Cell Interactions with Polymers,” In: R. P. Lanza, R. Langer and J. Vacanti, Eds., Principles of Tissue Engineering, Elsevier, Amsterdam, 1996, pp. 221-235.
|
[28]
|
C. S. Izzard and L. R. Lochner, “Cell-to-Substrate Contacts in Living Fibroblasts: An Interference Reflexion Study with an Evaluation of the Technique,” Cell Science, Vol. 21, No. 1, 1976, pp. 129-159.
|
[29]
|
P. Roach, D. Farrar and C. C. Perry, “Surface Tailoring for Controlled Protein Adsorption: Effect of Topography at the Nanometer Scale and Chemistry,” Journal of the American Chemical Society, Vol. 128, No. 12, 2006, pp. 3939-3945.
|
[30]
|
T. E. Creighton, “Proteins: Structures and Molecular properties-2ndedition,” W. H. Freeman & Company, New York, 1993.
|
[31]
|
C. R. Cantor and P. R. Schimmel, “Biophysical Chemistry Part I: The Conformation of Biological Macromolecules,” W. H. Freeman & Company, New York, 1980.
|