A Transparent Polyimide Film as a Biological Cell Culture Sheet with Microstructures


The research on stem cell cultures has attracted much attention due to the recent development of regenerative medicine. Therefore, higher functionalities for devices used for culturing cells are strongly demanded. In this study, we fabricated cell culture sheets using transparent polyimide (PI), parylene (PA), and polyetheretherketone (PEEK) to make polymer materials that had microstructures. We then cultured stromal marrow cells (OP9) on them and investigated the cell alignment within the microstructures. Hot embossing was used to fabricate the microstructures with a width and depth of 5 μm on the polymer substrates. Cultivation of the cells was confirmed on the transparent PI and PA sheets, however, it was not observed on the PEEK sheet. Slight alignment of the cells was also observed along with the microstructures.

Share and Cite:

H. Maenosono, H. Saito and Y. Nishioka, "A Transparent Polyimide Film as a Biological Cell Culture Sheet with Microstructures," Journal of Biomaterials and Nanobiotechnology, Vol. 5 No. 1, 2014, pp. 17-23. doi: 10.4236/jbnb.2014.51003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. H. Reddi, “Morphogenesis and Tissue Engineering of Bone and Cartilage: Inductive Signals, Stem Cells, and Biomimetic Biomaterials,” Tissue Engineering, Vol. 6, No. 4, 2000, pp. 351-359.
[2] G. Keller, “Embryonic Stem Cell Differentiation: Emergence of a New Era in Biology and Medicine,” Genes & Development, Vol. 19, No. 10, 2005, pp. 1129-1155.
doi: 10. 1101/gad.1303605
[3] T. L. Charest, M. T. Eliason, A. J. Garcia and W. P. King, “Combined Microscale Mechanical Topography and Chemical Patterns on Polymer Cell Culture Substrates,” Biomaterials, Vol. 27, No. 11, 2006, pp. 2487-2494.
doi: 10. 1016/j.biomaterials.2005.11.022
[4] S. Taqvi and K. Roy, “Influence of Scaffold Physical Properties and Stromal Cell Coculture on Hematopoietic Differentiation of Mouse Embryonic Stem Cells,” Biomaterials, Vol. 27, No. 36, 2006, pp. 6024-6031.
[5] N. S. Hwang, S. Varghese and J. Elisseeff, “Controlled Differentiation of Stem Cells,” Advanced Drug Delivery Reviews, Vol. 60, No. 2, 2008, pp. 119-214.
doi: 10. 1016/j.addr.2007.08.036
[6] A. Khademhosseini, R. Langer, J. Borenstein and J. P. Vacanti, “Microscale Technologies for Tissue Engineering and Biology,” Proceedings of the National Academy of Sciences, Vol. 103, No. 8, 2006, pp. 2480-2487.
doi: 10. 1073/pnas.0507681102
[7] S. Levenberg, N. F. Huang, E. Lavik, A. B. Rogers, J. Itskoviz-Eldor and R. Langer, “Differentiation of Human Embryonic Stem Cells on Three-Dimensional Polymer Scaffolds,” Proceedings of the National Academy of Sciences, Vol. 100, No. 22, 2003, pp. 12741-12746.
doi: 10. 1073/pnas.1735463100
[8] S. Battista, D. Guarnieri, C. Borselli, S. Zeppetelli, A. Borzacchiello, L. Mayol, D. Gerbasio, D. R. Keene, L. Ambrosio and P. A. Netti, “The Effect of Matrix Composition of 3D Constructs on Embryonic Stem Cell Differentiation,” Biomaterials, Vol. 26, No. 31, 2005, pp. 6194-6207.
[9] S. Yang, K. Leong, Z. Du and C. Chua, “The Design of Scaffolds for Use in Tissue Engineering Part I. Traditional Factors,” Tissue Engineering, Vol. 7, No. 6, 2001, pp. 679-689. http://dx.doi.org/10.1089/107632701753337645
[10] J. L. Charest, L. E. Bryant, A. J. Garcia and W. P. King, “Hot Embossing for Micropatterned Cell Substrates,” Biomaterials, Vol. 25, No. 19, 2004, pp. 4767-4775.
[11] A. Noghero, F. Bussolino and A. Gualandris, “Role of the Microenvironment in The Specification of Endothelial Progenitors Derived from Embryonic Stem Cells,” Microvascular Research, Vol. 79, No. 3, 2010, pp. 178-183.
[12] A. I. Caplan, “Mesenchymal Stem Cells,” Journal of Orthopaedic Research, Vol. 9, No. 5, 1991, pp. 641-650.
[13] D. J. Prockop, “Marrow Stromal Cells as Stem Cells for Nonhematopoietic Tissues,” Science, Vol. 276, No. 71, 1997, pp. 71-74. http://dx.doi.org/10.1126/science.276.5309.71
[14] M. A. Vodyanik, J. A. Bork, J. A. Thomson and I. I. Slukvin, “Human Embryonic Stem Cell-Derived CD34+ Cells: Efficient Production in the Coculture with OP9 Stromal Cells and Analysis of Lymphohematopoietic Potential,” Blood, Vol. 105, No. 2, 2005, pp. 617-626.
[15] P. Trivedi and P. Hematti, “Simultaneous Generation of CD34+ Primitive Hematopoietic Cells and CD73+ Mesenchymal Stem Cells from Human Embryonic Stem Cells Cocultured with Murine OP9 Stromal Cells,” Experimental Hematology, Vol. 35, No. 1, 2007, pp. 146-154.
[16] S. T. Fraser, J. Yamashita, L. M. Jakt, M. Okada, M. Ogawa, S. Nishikawa and S. Nishikawa, “In Vitro Differentiation of Mouse Embryonic Stem Cells: Hematopoietic and Vascular Cell Types,” Methods in Enzymology, Vol. 365, 2003, pp. 60-72.
[17] K. Kitajima, M. Tanaka, J. Zheng, E. Sakai-Ogawa and T. Nakano, “In Vitro Differentiation of Mouse Embryonic Stem Cells to Hematopoietic Cells on an OP9 Stromal Cell Monolayer,” Methods in Enzymology, Vol. 365, 2003, pp. 73-83.
[18] H. Komatsuzaki, K. Suzuki, Y. Liu, T. Kosugi, R. Ikoma, S.-W. Youn, M. Takahashi, R. Maeda and Y. Nishioka, “Flexible Polymide Micropump Fabricated Using Hot Embossing,” Japanese Journal of Applied Physics, Vol. 50, 2011, Article ID: 06GM09.
[19] R. Ikoma, H. Komatsuzaki, K. Suzuki, T. Komori, K. Kuroda, H. Saitou, S.-W Youn, H. Hiroshima, M. Takahashi, R. Maeda and Y. Nishioka, “Transfer of Relatively Large Microstructures on Polyimide Films using Thermal Nanoimprinting,” Journal of Photopolymer Science and Technology, Vol. 25, No. 2, 2012, pp. 255-260.
[20] R. Ikoma, H. Komatsuzaki, T. Komori, K. Kuroda, H. Saito and Y. Nishioka, “Valveless Micropumps with Dual Polyimide Diaphragms,” Applied Mechanics and Materials, Vol. 300-301, 2013, pp. 1364-1367.
[21] H. Saito, H. Komatsuzaki, R. Ikoma, T. Komori, K. Kuroda, Y. Kimura, Y. Fukushi, H. Maenosono, S. Koide, M. Satano and Y. Nishioka, “Electroosmotic Flow Pump on Transparent Polyimide Substrate Fabricated Using Hot Embossing,” Applied Mechanics and Materials, Vol. 300-301, 2013, pp. 1360-1363.
[22] T. Komori, T. Kosugi, K. Kuroda, H. Saito, Y. Kimura, Y. Fukushi, H. Maenosono, S. Koide, M. Satano, R. Ikoma and Y. Nishioka, “Transfer Printing of Au Micropatterns on Polyimide Films, Journal of Photopolymer Science and Technology, Vol. 26, No. 3, 2013, pp. 309-312.
[23] Y. Fukushi, S. Koide, R. Koma, W. Akatsuka, S. Tsujimura and Y. Nishioka, “Fabrication and Characterization of Glucose Fuel Cells with Microchannels Fabricated on Flexible Polyimide Film,” Journal of Photopolymer Science and Technology, Vol. 26, 2013, pp. 303-308.
[24] Product Name: Neopulim L. Mitsubishi Gas Chemical Company, INC., Tokyo, Japan, 2013.
[25] I. M. Herman, N. J. Crisona and T. D. Pollard, “Relation between Cell Activity and the Distribution of Cytoplasmic Actin and Myosin,” The Journal of Cell Biology, Vol. 90, No. 1, 1981, pp. 84-91.
[26] L. B. Buravkova, Y. A. Romanov, N. A. Konstantinova, S. V. Buravkov, Y. G. Gershovich and I. A. Grivennikov, “Cultured Stem Cells Are Sensitive to Gravity Changes,” Acta Astronautica, Vol. 63, No. 5-6, 2008, pp. 603-608.
[27] W. M. Saltzman, “Cell Interactions with Polymers,” In: R. P. Lanza, R. Langer and J. Vacanti, Eds., Principles of Tissue Engineering, Elsevier, Amsterdam, 1996, pp. 221-235.
[28] C. S. Izzard and L. R. Lochner, “Cell-to-Substrate Contacts in Living Fibroblasts: An Interference Reflexion Study with an Evaluation of the Technique,” Cell Science, Vol. 21, No. 1, 1976, pp. 129-159.
[29] P. Roach, D. Farrar and C. C. Perry, “Surface Tailoring for Controlled Protein Adsorption: Effect of Topography at the Nanometer Scale and Chemistry,” Journal of the American Chemical Society, Vol. 128, No. 12, 2006, pp. 3939-3945.
[30] T. E. Creighton, “Proteins: Structures and Molecular properties-2ndedition,” W. H. Freeman & Company, New York, 1993.
[31] C. R. Cantor and P. R. Schimmel, “Biophysical Chemistry Part I: The Conformation of Biological Macromolecules,” W. H. Freeman & Company, New York, 1980.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.