Schottkey Barrier Measurement of Nanocrystalline Lu3N@C80/Au Contact


Electrical and structural properties of nanocrystalline solids of C80 fullerene encapsulated with a Lu3N cluster, Lu3N@C80, have been studied by measuring x-ray photoemission spectra, x-ray diffraction, and current-voltage characteristics of the Lu3N@C80/Au Schottky contact in the temperature range of 300 - 500 K. The nanocrystalline solid sample of Lu3N@C80 fullerene consists of grains characterized with an fcc structure and those grains become larger in size after pressing the powder sample at 1.25 GPa. The current-voltage characteristics measured at various temperatures showed that there are no significant dependences on both the Schottky barrier and the carrier mobility on electric field. The Schottky barrier of the Lu3N@C80/Au contact is determined to be 0.71 ± 0.04 eV.

Share and Cite:

Y. Sun, Y. Hattori, M. Sakaino, F. Morimoto and K. Kirimoto, "Schottkey Barrier Measurement of Nanocrystalline Lu3N@C80/Au Contact," Materials Sciences and Applications, Vol. 4 No. 12, 2013, pp. 808-815. doi: 10.4236/msa.2013.412103.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Stevenson, G. Rice, T. Glass, K. Harich, F. Cromer, M. Jordan, J. Craft, E. Hadju, R. Bible, M. Olmstead, K. Maitra, A. Fisher, A. Balch and H. Dorn, “Small-Bandgap Endohedral Metallofullerenes in High Yield and Purity,” Nature (London), Vol. 401, No. 6748, 1999, pp. 55-57.
[2] L. Dunsch, M. Krause, J. Noack and P. Georgi, “Endohedral Nitride Cluster Fullerenes: Formation and Spectroscopic Analysis of L3-xMxN@C2n (0≤x≤3; N=39,40),” Journal of Physics and Chemistry of Solids, Vol. 65, No. 2-3, 2004, pp. 309-315.
[3] S. F. Yang, M. Kalbac, A. Popov and L. Dunsch, “Gadolinium-Based Mixed-Metal Nitride Clusterfullerenes GdxSc3-xN@C80 (x=1, 2),” ChemPhysChem, Vol. 7, No. 9, 2006, pp. 1990-1995.
[4] T. Cai, L. Xu, M. R. Anderson, Z. Ge, T. Zuo, X. Wang, M. M. Olmstead, A. L. Baich, H. W. Gibson and H. C. Dom, “Structure and Enhanced Reactivity Rates of the D5h Sc3N@C80 and Lu3N@C80 Metallofullerene Isomers:e Importance of the Pyracylene Motif,” Journal of the American Chemical Society, Vol. 128, No. 26, 2006, pp. 8581-8189.
[5] H. W. Kroto, “The Stability of the Fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70,” Nature, Vol. 329, No. 6139, 1987, pp. 529-531.
[6] K. Nakao, N. Kurita and M. Fujita, “Ab initio MolecularOrbital Calculation for C70 and Seven Isomers of C80,” Physical Review B, Vol. 49, No. 16, 1994, pp. 11415-11420.
[7] M. Krause and L. Dunsch, “Isolation and Characterisation of Two Sc3N@C80 Isomers,” ChemPhysChem, Vol. 5, No. 9, 2004, pp. 1445-1449.
[8] B. Larade, J. Talor, Q. R. Zheng, H. Mehrez, P. Pomorski and H. Guo, “Renormalized Molecular Levels in a Sc3N @C80 Molecular Electronic Device,” Physical Review B, Vol. 64, No. 19, 2001, Article ID: 195402.
[9] T. R. Cummins, M. Burk, M. Schmidt, J. F. Armbruster, D. Fuchs, P. Adelmann, S. Schuppler, R. H. Michel and M. M. Kappes, “Electronic States and Molecular Symmetry of the Higher Fullerene C80,” Chemical Physics Letters, Vol. 261, No. 3, 1996, pp. 228-233.
[10] A. Muller, S. Schippers, R. A. Phaneuf, M. Habibi, D. Esteves, J. C. Wang, A. L. D. Kilcoyne, A. Aguilar, S. Yang and L. Dunsch, “Photoionization of the Endohedral Fullerene Ions Sc3N@C80+ and Ce@C82+ by Synchrotron Radiation,” Journal of Physics: Conference Series, Vol. 88, 2007, Article ID: 012038.
[11] M. Krause, H. Kuzmany, P. Georgi, L. Dunsch, K. Vietze and G. Seifert, “Structure and Stability of Endohedral Fullerene Sc3N@C80: A Raman, Infrared, and Theoretical Analysis,” Journal of Chemical Physics, Vol. 115, 2001, pp. 6596-6605.
[12] S. Klod, L. Zhang and L. Dunsch, “The Role of the Cluster on the Relaxation of Endohedral Fullerene Cage Carbons: A NMR Spin-Lattice Relaxation Study of an Internal Relaxation Reagent,” Journal of Physical Chemistry C, Vol. 114, No. 18, 2010, pp. 8264-8267.
[13] T. Huang, J. Zhao, M. Feng, H. Petek, S. Yang and L. Dunsch, “Superatom Orbitals of Sc3N@C80 and Their Tntermolecular Hybridization on Cu(110)-(2×1)-O Surface,” Physical Review B, Vol. 81, No. 8, 2010, Article ID: 085434.
[14] L. Xu, S. F. Li, L. H. Gan, C. Y. Shu and C. R. Wang, “The Structures of Trimetallic Nitride Fullerenes M3N@ C88: Theoretical Evidence of Corporation between Electron Transfer Interaction and Size Effect,” Chemical Physics Letters, Vol. 521, 2012, pp. 81-85.
[15] L. Chen, E. E. Carpenter, C. S. Hellberg, H. C. Dorn, M. Shultz, W. Wernsdorfer and I. Chiorescu, “Spin Transition in Gd3N@C80, Detected by Low-Temperature onchip SQUID Technique,” Journal of Applied Physics, Vol. 109, 2011, Article ID: 07B101.
[16] M. Wolf, K. H. Muller, D. Eckert, Y. Skourski, P. Georgi, R. Marczak, M. Krause and L. Dunsch, “Magnetic Moments in Ho3N@C80 and Tb3N@C80,” Journal of Magnetism and Magnetic Materials, Vol. 290-291, 2005, pp. 290-293.
[17] M. E. Plonska-Brzezinska, A. J. Athans, J. P. Phillips, S. Stevenson and L. Echegoyen, “. A Reinvestigation of the Electrochemical Behavior of Sc3N@C80,” Journal of Electroanalytical Chemistry, Vol. 614, No. 1-2, 2008, pp. 171-174.
[18] Y. Zhu, Y, Li and Z. Q. Yang, “First-Principles Investigation on the Electronic Structures of Intercalated Fullerenes M3N@C80 (M=Sc, Y, and lanthanides),” Chemical Physics Letters, Vol. 461, No. 4-6, 2008, pp. 285-289.
[19] S. Stevenson, H. M. Lee, M. M. Olmstead, C. Kozikowski, P. Stevenson and A. L. Balch, “Preparation and Crystallographic Characterization of a New Endohedral, Lu3N@C8 5 (o-xylene), and Comparison with Sc3N@C80 5 (o-xylene),” Chemistry—A European Journal, Vol. 8, No. 19, 2002, pp. 4528-4535.<4528::AID-CHEM4528>3.0.CO;2-8
[20] E. B. Iezzi, J. C. Duchamp, K. R. Fletcher, T. E. Glass and H. C. Dorn, “Lutetium-Based Trimetallic Nitride Endohedral Metallofullerenes: New Contrast Agents,” Nano Letters, Vol. 2, No. 11, 2002, pp. 1187-1190.
[21] R. Konenkamp, G. Priebe and B. Pietzak, “Carrier Mobilities and Influence of Oxygen in C60 Films,” Physical Review B, Vol. 60, No. 16, 1999, pp. 11804-11808.
[22] E. Frankevich, Y. Maruyama and H. Ogata, “Mobility of Charge Carriers in Vapor-Phase Grown C60 Single Crystal,” Chemical Physics Letters, Vol. 214, No. 1, 1993, pp. 39-44.
[23] G. Priebe, B. Pietzak and R. Konenkamp, “Determination of Transport Parameters in Fullerene Films,” Applied Physics Letters, Vol. 71, 1997, pp. 2160-2162.
[24] S. Sato, S. Seki, G. Luo, M. Suzuki, J. Lu and S. Nagase, “Tunable Charge-Transport Properties of Ih-C80 Endohedral Metallofullerenes: Investigation of La2@C80, Sc3N @C80, and Sc3C2@C80,” Journal of the American Chemical Society, Vol. 134, No. 28, 2012, pp. 11681-11686.
[25] E. Frankevich, Y. Maruyama and H. Ogata, “Mobilities of Charge Carriers in C60 Orthorhombic Single Crystal,” Solid State Communications, Vol. 88, 1993, pp. 177-181.
[26] A. A. Popov and L. Dunsch, “Hindered Cluster Rotation and 45Sc Hyperfine Splitting Constant in Distonoid Anion Radical Sc3N@C80-, and Spatial Spin-Charge Separation as a General Principle for Anions of Endohedral Fullerenes with Metal-Localized Lowest Unoccupied Molecular Orbitals,” Journal of the American Chemical Society, Vol. 130, No. 52, 2008, pp. 17726-17742.
[27] J. He, K. Wu, R. Sa, Q. Li and Y. Wei, “Dipole Polarizabilities of Trimetallic Nitride Endohedral Fullerenes M3N @C2n (M=Sc and Y; 2n=68 – 98),” Chemical Physics Letters, Vol. 475, No. 1-3, 2009, pp. 73-77.
[28] S. Klod and L. Dunsch, “Influence of the Cage Size on the Dynamic Behavior of Fullerenes: A Study of 13C NMR Spin-Lattice Relaxation,” ACS NANO, Vol. 4, No. 6, 2010, pp. 3236-3240.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.