The Role of Electric Field and Ultrasonication in the Deposition and Alignment of Single-Walled Carbon Nanotube Networks Using Dielectrophoresis

DOI: 10.4236/wjcmp.2013.34025   PDF   HTML   XML   3,106 Downloads   5,315 Views   Citations


The effects of electric field and ultrasonication on the deposition and alignment of single-walled carbon nanotubes (SWCNTs) across a 10 μm electrode gap have been studied. It was found that a frequency of ~1 MHz of the applied field yields the largest current independent of the magnitude of the voltage or the ultrasonication time of the sample. Increasing the ultrasonication time of a SWCNT solution changes the I-V characteristics of the deposited nanotubes from linear to nonlinear for all the voltages and frequencies of the applied field. Even in the absence of an electric field, SWCNTs bridged the electrode gap up to a critical sonication time which depends on the concentration of nanotubes in the solution.

Share and Cite:

Ammu, S. and Heskett, D. (2013) The Role of Electric Field and Ultrasonication in the Deposition and Alignment of Single-Walled Carbon Nanotube Networks Using Dielectrophoresis. World Journal of Condensed Matter Physics, 3, 159-163. doi: 10.4236/wjcmp.2013.34025.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Kim, S. Y. Xuan, P. D. Ye, S. Mohammadi and S. W. Lee, “Single-Walled Carbon Nanotube Transistors Fabricated by Advanced Alignment Techniques Utilizing CVD Growth and Dielectrophoresis,” Solid-State Electronics, Vol. 52, No. 8, 2008, pp. 1260-1263.
[2] M. Meyyappan, “Carbon Nanotubes: Science and Applications,” CRC Press, 2005.
[3] P. J. F. Harris, “Carbon Nanotube Science: Synthesis, Properties and Applications,” Cambridge University Press, Cambridge, 2009.
[4] M. Dimaki and P. Boggild, “Waferscale Assembly of Field-Aligned Nanotube Networks (FANs),” Physica Status Solidi A, Vol. 203, No. 6, 2006, pp. 1088-1093.
[5] M. Riegelman, H. Liu and H. H. Bau, “Controlled Nanoassembly and Construction of Nanofluidic Devices,” Journal of Fluids Engineering, Vol. 128, No. 1, 2006, pp. 613.
[6] S. Taeger, D. Sickert, P. Atanasov, G. Eckstein and M. Mertig, “Self-Assembly of Carbon Nanotube Field-Effect Transistors by Ac-Dielectrophoresis,” Physica Status Solidi B, Vol. 243, No. 13, 2006, pp. 3355-3358.
[7] L. M. Huang, Z. Jia and S. O’Brien, “Orientated Assembly of Single-Walled Carbon Nanotubes and Applications,” Journal of Materials Chemistry, Vol. 17, No. 37, 2007, pp. 3863-3874.
[8] M. Dimaki and P. Boggild, “Dielectrophoresis of Carbon Nanotubes Using Microelectrodes: A Numerical Study,” Nanotechnology, Vol. 15, No. 8, 2004, p. 1095.
[9] R. Krupke, F. Hennrich, H. V. Lohneysen and M. M. Kappes, “Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes,” Science, Vol. 301, No. 5631, 2003, pp. 344-347.
[10] M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, et al., “Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes,” Science, Vol. 297, No. 5581, 2002, pp. 593-596.
[11] S. Niyogi, M. A. Hamon, D. E. Perea, C. B. Kang, B. Zhao, S. K. Pal, et al., “Ultrasonic Dispersions of SingleWalled Carbon Nanotubes,” Journal of Physical Chemistry B, Vol. 107, No. 34, 2003, pp. 8799-8804.
[12] A. Koshio, M. Yudasaka, M. Zhang and S. Iijima, “A Simple Way to Chemically React Single-Wall Carbon Nanotubes with Organic Materials Using Ultrasonication,” Nano Letters, Vol. 1, No. 7, 2001, pp. 361-363.
[13] J. Hilding, E. A. Grulke, Z. G. Zhang and F. Lockwood, “Dispersion of Carbon Nanotubes in Liquids,” Journal of Dispersion Science and Technology, Vol. 24, No. 1, 2003, pp. 1-41.
[14] K. B. Shelimov, R. O. Esenaliev, A. G. Rinzler, C. B. Huffman and R. E. Smalley, “Purification of Single-Wall Carbon Nanotubes by Ultrasonically Assisted Filtration,” Chemical Physics Letters, Vol. 282, No. 5-6, 1998, pp. 429-434.
[15] D. A. Heller, R. M. Mayrhofer, S. Baik, Y. V. Grinkova, M. L. Usrey and M. S. Strano, “Concomitant Length and Diameter Separation of Single-Walled Carbon Nanotubes,” Journal of the American Chemical Society, Vol. 126, No. 44, 2004, pp. 14567-14573.
[16] K. Fu and Y. P. Sun, “Dispersion and Solubilization of Carbon Nanotubes,” Journal of Nanoscience and Nanotechnology, Vol. 3, No. 5, 2003, pp. 351-364.
[17] M. Ouyang, M. L. Y. Sin, G. C. T. Chow, W. J. Li, X. Han and D. C. Janzen, “DEP-Based Fabrication and Characterization of Electronic-Grade CNTs for Nano-Sensing Applications,” Proceedings of the 7th IEEE Conference on Nanotechnology, 2007, pp. 1-6.
[18] S. Banerjee, B. E. White, L. Huang, B. J. Rego, S. O’Brien and I. P. Herman, “Precise Positioning of Single-Walled Carbon Nanotubes by Ac Dielectrophoresis,” Journal of Vacuum Science & Technology B, Vol. 24, No. 6, 2006, p. 3173.
[19] A. Subramanian, B. Vikramaditya, L. Dong, D. Bell and B. J. Nelson, “Micro and Nanorobotic Assembly Using Dielectrophoresis,” Proceedings of Robotics: Science and Systems, Cambridge, 2005, pp. 208-215.
[20] P. Li and W. Xue, “Selective Deposition and Alignment of Single-Walled Carbon Nanotubes Assisted by Dielectrophoresis: From Thin Films to Individual Nanotubes,” NanoScale Research Letters, Vol. 5, 2010, pp. 1072-1078.
[21] R. Cicoria and Y. Sun, “Dielectrophoretically Trapping Semiconductive Carbon Nanotube Networks,” Nanotechnology, Vol. 19, No. 48, 2008, Article ID: 485303.
[22] J. Moscatello, V. Kayastha, B. Ulmen, A. Pandey, S. Wu, A. Singh, et al., “Surfactant-Free Dielectrophoretic Deposition of Multi-Walled Carbon Nanotubes with Tunable Deposition Density,” Carbon, Vol. 48, No. 12, 2010, pp. 3559-3569.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.