Spanish Extreme Winds and Their Relationships with Atlantic Large-Scale Atmospheric Patterns


The purpose of this work is to review procedures to obtain relationships between wind and large-scale atmospheric fields, with special emphasis on extreme situation results. Such relationships are obtained by using different methods and techniques such as wind cumulative probability functions and composite maps. The analyses showed different mean atmospheric situations associated with the different wind patterns, in which strong atmospheric gradients can be related to moderate to strong winds in Spain. Additionally, a statistical downscaling analog model, developed by the authors, is used for diagnosing large-scale atmospheric circulation patterns and subsequently estimating extreme wind probabilities. From an atmospheric circulation pattern set obtained by multivariate methodology applied to a large-scale atmospheric circulation field, estimations of wind fields, particularly extreme winds, are obtained by means of the analogs methodology. Deterministic and probabilistic results show that gust behaviour is quite better approximated than mean wind speed, in general. The model presents some underestimations except for strong winds. Moreover, the model shows better probabilistic wind results over the Spanish northern area, highlighting that the atmospheric situations coming from the Atlantic Ocean are better recovered to predict mean wind and gusts in the Northern Peninsula.

Share and Cite:

A. Pascual, F. Valero, M. Martín and C. García-Legaz, "Spanish Extreme Winds and Their Relationships with Atlantic Large-Scale Atmospheric Patterns," American Journal of Climate Change, Vol. 2 No. 3A, 2013, pp. 23-35. doi: 10.4236/ajcc.2013.23A003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] “Swiss Re,” 2000.
[2] U. Ulbrich, A. H. Fink, M. Klawa and J. G. Pinto, “Three extreme storms over Europe in December,” Weather, Vol. 56, No. 3, 2001, 1999, pp. 70-80. doi:10.1002/j.1477-8696.2001.tb06540.x
[3] J. I. Barredo, “No Upward Trend in Normalised Windstorm Losses in Europe: 1970-2008,” Natural Hazards of Earth System Sciences, Vol. 10, 2010, pp. 97-104. doi:10.5194/nhess-10-97-2010
[4] J. P. Palutikof, P. M. Kelly, T. D. Davies and J. A. Halliday, “Impacts of Spatial and Temporal Windspeed Variability on Wind Energy Output,” Journal of Applied Meteorology, Vol. 26, No. 9, 1987, pp. 1124-1133. doi:10.1175/1520-0450(1987)026<1124:IOSATW>2.0.CO;2
[5] R. H. Thuilleier, “Real-Time of Local Wind Patterns for Application to Nuclear-Emergency Response,” Bulletin of the American Meteorological Society, Vol. 68, No. 9, 1987, pp. 1111-1115. doi:10.1175/1520-0477(1987)068<1111:RTAOLW>2.0.CO;2
[6] J. A. Zuranski and B. Jaspinka, “Directional Analysis of Extreme Wind Speeds in Poland,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 65, No. 1-3, 1996, pp. 13-20. doi:10.1016/S0167-6105(97)00018-4
[7] M. Gaya, J. Amaro, M. Aran and M. C. Llasat, “Preliminary Results of the Societal Impact Research Group of MEDEX: The Request Database (2000-2002) of Two Meteorological Services,” Proceedings of 9th EGS Plinius Conference, Nisosia, 2008, p. 12.
[8] J. Amaro, M. Aran, L. Barberia and M. C. Llasat, “The Strong Wind Event of 24th January 2009 in Catalonia: A Social Impact Analysis,” Proceedings of 10th EGS Plinius Conference, Barcelona, 2009, p. 10.
[9] M. J. OrtizBeviá, E. SánchezGómez and F. J. Alvarez-García, “North Atlantic Atmospheric Regimes and Winter Extremes,” Natural Hazards and Earth System Science, Vol. 11, 2011, pp. 971-980. doi:10.5194/nhess-11-971-2011
[10] J. Tastu, P. Pinson, E. Kotwa, H. Aa. Nielsen and H. Madsen, “Spatio-Temporal Analysis and Modeling of Wind Power Forecast Errors,” Wind Energy, Vol. 14, No. 1, 2011, pp. 43-60. doi:10.1002/we.401
[11] P. Pinson, G. Papaefthymiou, B. Klockl, H. Aa. Nielsen and H. Madsen, “From Probabilistic Forecasts to Statistical Scenarios of Short-Term Wind Power Production,” Wind Energy, Vol. 12, No. 1, 2009, pp. 51-62. doi:10.1002/we.284
[12] P. Pinson and H. Madsen, “Adaptive Modeling and Forecasting of Wind Power Fluctuations with Markov-Switching Autoregressive Models,” Journal of Forecasting, Vol. 31, No. 4, 2012, pp. 281-313. doi:10.1002/for.1194
[13] P. Pinson, H. Aa. Nielsen, H. Madsen and G. Kariniotakis, “Skill Forecasting from Ensemble Predictions of Wind Power,” Applied Energy, Vol. 86, No. 7-8, 2009, pp. 1326-1334. doi:10.1016/j.apenergy.2008.10.009
[14] M. L. Martín, D. Santos-Munoz, F. Valero and A. Morata, “Evaluation of an Ensemble Precipitation Prediction System over the Western Mediterranean Area,” Atmospheric Research, Vol. 98, No. 1, 2010, pp. 163-175. doi:10.1016/j.atmosres.2010.07.002
[15] M. Y. Luna, M. L. Martín, F. Valero and F. González-Rouco, “Wintertime Iberian Peninsula Precipitation Variability and Its Relation to North Atlantic Atmospheric Circulation,” In: M. Brunet and D. López, Eds., Detecting and Modelling Regional Climate Change and Associated Impacts, Springer-Verlag, Berlin, 2001, pp. 369-376. doi:10.1007/978-3-662-04313-4_31
[16] F. Valero, M. Y. Luna, M. L. Martín, A. Morata and F. González-Rouco, “Coupled Modes of Large-Scale Climatic Variables and Regional Precipitation in the Western Mediterranean in Autumn,” Climate Dynamics, Vol. 22, No. 2-3, 2004, pp. 307-323. doi:10.1007/s00382-003-0382-9
[17] M. L. Martín, M. Y. Luna, A. Morata and F. Valero, “North Atlantic Teleconnection Patterns of Low-Frequency Variability and Their Links with Springtime Precipitation in the Western Mediterranean,” International Journal of Climatology, Vol. 24, No. 2, 2004, pp. 213-230. doi:10.1002/joc.993
[18] M. L. Martín, F. Valero, A. Morata, M. Y. Luna, A. Pascual and D. Santos-Munoz, “Springtime Coupled Modes of Regional Wind in the Iberian Peninsula and Large-Scale Variability Patterns,” International Journal of Climatology, Vol. 31, No. 6, 2011, pp. 880-895. doi:10.1002/joc.2127
[19] M. L. Martín, F. Valero, A. Pascual, A. Morata and M. Y. Luna, “Springtime Connections between the Large-Scale Sea Level Pressure Field and Gust Wind Speed over Iberia,” Natural Hazards of Earth System Sciences, Vol. 11, 2011, pp. 191-203. doi:10.5194/nhess-11-191-2011
[20] E. García-Ortega, L. López and J. L. Sánchez, “Atmospheric Patterns Associated with Hailstorm Days in the Ebro Valley, Spain,” Atmospheric Research, Vol. 100, No. 4, 2011, pp. 401-427. doi:10.1016/j.atmosres.2010.08.023
[21] R. Frouin, A. F. Fiúza, I. Ambar and T. J. Boyd, “Observations of a Poleward Surface Current off the Coasts of Portugal and Spain during the Winter,” Journal of Geophysical Research, Vol. 95, No. C1, 1990, pp. 679-691. doi:10.1029/JC095iC01p00679
[22] R. D. Haynes and E. D. Barton, “A Poleward Flow along the Atlantic Coast of the Iberian Peninsula,” Journal of Geophysical Research, Vol. 95, No. 1, 1990, pp. 11425-11442. doi:10.1029/JC095iC07p11425
[23] P. Bougeault, B. Benech, P. Bessemoulin, B. Carissimo, A. Lar, J. Pelon, M. Petitdidier and E. Richard, “PYREX: A Summary of findings,” Bulleting American Meteorological Society, Vol. 78, No. 4, 1997, pp. 637-650. doi:10.1175/1520-0477(1997)078<0637:PASOF>2.0.CO;2
[24] F. Valero, Y. Luna and M. L. Martín, “An Overview of a Heavy Rain Event at Southeastern Iberia: The Role of the Large-Scale Meteorological Conditions,” Annales Geophysicae, Vol. 15, 1997, pp. 494-502. doi:10.1007/s00585-997-0494-3
[25] E. N. Lorenz, “Atmospheric Predictability as Revealed by Naturally Accourring Analogues,” Journal of Atmospheric Science, Vol. 26, No. 4, 1969, pp. 636-646. doi:10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2
[26] T. Hastie, R. Tibshirani and J. Friedman, “The Elements of Statistical Learning,” Springer, New York, 2001. doi:10.1007/978-0-387-21606-5
[27] J. Fernandez and J. Saenz, “Improved Field Reconstruction with the Analog Method: Searching the CCA Space,” Climate Research, Vol. 24, No. 3, 2003, pp. 199-213. doi:10.3354/cr024199
[28] K. Fraedrich, C. C. Raible and F. Sielmann, “Analog Ensemble Forecasting of Tropical Cyclone Tracks in the Australian Region,” Weather and Forecasting, Vol. 18, 2003, pp. 3-11.
[29] E. Y. Zorita and H. von Storch, “The Analog Method as a Simple Statistical Downscaling Technique: Comparison with More Complicated Methods,” Journal of Climate, Vol. 12, No. 8, 1999, pp. 2474-2489. doi:10.1175/1520-0442(1999)012<2474:TAMAAS>2.0.CO;2
[30] R. L. Wilby and T. Wigley, “Downscalling General Circulation Model Output. A Review of Methods and Limitations,” Progress in Physical Geography, Vol. 21, No. 4, 1997, pp. 530-548. doi:10.1177/030913339702100403
[31] H. M. Dool van den, “Searching for Analogs, How Long Must We Wait?” Tellus, Vol. 46A, 1994, pp. 314-324.
[32] A. Pascual, M. L. Martin, F. Valero, D. Santos-Munoz,, A. Morata and M. Y. Luna, “Development of an Analogous Model for Wind Prediction Using Principal Components,” The SAFEWIND Workshop, Oldemburg, 2010, 22 p.
[33] A. Morata, M. L. Martín, M. G. Sotillo, F. Valero and M. Y. Luna, “Iberian Autumn Precipitation Characterization through Observed, Simulated and Reanalysed Data,” Advances of Geosciences, Vol. 16, 2008, pp. 49-54. doi:10.5194/adgeo-16-49-2008
[34] F. Valero, M. L. Martín, M. G. Sotillo, A. Morata and M. Y. Luna, “Characterization of the Autumn Iberian Precipitation from Long-Term Data Sets: Comparison between Observed and Hindcasted Data,” International Journal of Climatology, Vol. 29, No. 4, 2009, pp. 527-541. doi:10.1002/joc.1726
[35] A. J. Simmons and J. K. Gibson, “The ERA-40 Project Plan,” ERA-40 Project Report Series No. 1. ECMWF, Reading, 2000.
[36] R. W. Preisendorfer, “Principal Component Analysis in Meteorology and Oceanography,” Elsevier Science Publishers BV, Amsterdam, 1998.
[37] A. Pascual, M. L. Martín, F. Valero, M. Y. Luna and A. Morata, “Wintertime Connections between Extreme Wind Patterns in Spain and Large-Scale Geopotential Heath Field,” Atmospheric Research, Vol. 122, 2013, pp. 213-228. doi:10.1016/j.atmosres.2012.10.033
[38] H. B. Bluestein, “Synoptic Dynamic Meteorology in Midlatitudes. Vol. II. Observations and Theory of Weather Systems,” Oxford University Press, Oxford, 1993.
[39] T. M. Hamill, “Interpretation of Rank Histograms for Verifying Ensemble Forecasts,” Monthly Weather Review, Vol. 129, 2001, pp. 550-560. doi:10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2
[40] P. Pinson and R. Hagedorn, “Verification of the ECMWF Ensemble Forecasts of Wind Speed against Observations,” Meteorological Applications, Vol. 19, No. 4, 2012, pp. 484-500. doi:10.1002/met.283
[41] S. Herrera, S. Pazo, J. Fernández and M. A. Rodríguez, “The Role of Large-Scale Spatial Patterns in the Chaotic Amplification of Perturbations in a Lorenz’96 Model,” Tellus A, Vol. 63, No. 5, 2011, pp. 978-990. doi:10.1111/j.1600-0870.2011.00545.x
[42] A. Pascual, F. Valero, M. L. Martín, A. Morata and M. Y. Luna, “Probabilistic and Deterministic Results of the ANPAF Analog Model for Spanish Wind Field Estimations,” Atmospheric Research, Vol. 108, 2012, pp. 39-56. doi:10.1016/j.atmosres.2012.01.011
[43] A. S. Cofino, “Técnicas Estadísticas y Neuronales de Agrupamiento Adaptativo Para la Predicción Probabilística de Fenómenos Meteorológicos Locales. Aplicación en el Corto Plazo y en la Predicción Estacional,” Tesis Doctoral, Universidad de Cantabria, Cantabria, 2004.
[44] J. M. Gutiérrez, R. Cano, A. S. Cofino and M. A. Rodríguez, “Clustering Methods for Statistical Down-scaling in Short-Range Weather Forecast,” Monthly Weather Review, Vol. 132, No. 9, 2004, pp. 2169-2183. doi:10.1175/1520-0493(2004)132<2169:CMFSDI>2.0.CO;2
[45] G. W. Brier, “Verification of Forecasts Expressed in Terms of Probabilities,” Monthly Weather Review, Vol. 78, No. 1, 1950, pp. 1-3. doi:10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.