Load Flow Analysis Framework for Active Distribution Networks Based on Smart Meter Reading System

DOI: 10.4236/eng.2013.510A001    5,509 Downloads   8,389 Views   Citations

ABSTRACT

With the expansion of distributed generation systems and demand response programs, the need to fully utilize distribution system capacity has increased. In addition, the potential bidirectional flow of power on distribution networks demands voltage visibility and control at all voltage levels. Distribution system state estimations, however, have traditionally been less prioritized due to the lack of enough measurement points while being the major role player in knowing the real-time system states of active distribution networks. The advent of smart meters at LV loads, on the other hand, is giving relief to this shortcoming. This study explores the potential of bottom up load flow analysis based on customer level Automatic Meter Reading (AMRs) to compute short time forecasts of demands and distribution network system states. A state estimation frame-work, which makes use of available AMR data, is proposed and discussed.

Cite this paper

M. Degefa, R. Millar, M. Koivisto, M. Humayun and M. Lehtonen, "Load Flow Analysis Framework for Active Distribution Networks Based on Smart Meter Reading System," Engineering, Vol. 5 No. 10A, 2013, pp. 1-8. doi: 10.4236/eng.2013.510A001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. Samarakoon, J. Wu, J. Ekanayake and N. Jenkins, “Use of Delayed Smart Meter Measurements for Distribution State Estimation,” 2011 IEEE Power and Energy Society General Meeting, San Diego, 24-29 July 2011, pp. 1-6.
[2] A. Abdel-Majeed and M. Braun, “Low Voltage System State Estimation Using Smart Meters,” 47th International Universities Power Engineering Conference (UPEC), London, 4-7 September 2012, pp. 1-6.
[3] P. A. Pegoraro, J. Tang, J. Liu, F. Ponci, A. Monti and C. Muscas, “PMU and Smart Metering Deployment for State Estimation in Active Distribution Grids,” 2nd IEEE ENERGYCON Conference & Exhibition, Florence, 9-12 September 2012, pp. 873-878.
[4] M. Lehtonen, M. Jalonen, A. Matsinen, J. Kuru and V. Haapamaki, “A Novel State Estimation Model for Distribution System,” 14th Power Systems Computation Conference PSCC, Sevilla, 24-28 June 2002, pp. 1-5.
[5] R. T. Guttromson, D. P. Chassin and S. E. Widergren, “Residential Energy Resource Models for Distribution Feeder Simulation,” IEEE Power Engineering Society General Meeting, Toronto, 13-17 July 2003, pp. 108-113.
[6] K. P. Schneider and J. C. Fuller, “Detailed End Use Load Modeling for Distribution System Analyses,” 2010 IEEE Power and Energy Society General Meeting, Minneapolis, 25-29 July 2010, pp. 1-7.
[7] H. L. Willis, “Power Distribution Planning Reference Book,” Marcel Dekker, Inc., New York, 1997.
[8] H. K. Alfares and M. Nazeeruddin, “Electric Load Forecasting: Literature Survey and Classification of Methods,” International Journal of Systems Science, Vol. 33, No. 1, 2002, pp. 23-34.
[9] H. Wang and N. Schulz, “A Load Modeling Algorithm for Distribution System State Estimation,” IEEE/PES Transmission and Distribution Conference and Exposition Volume 1, Atlanta, 28 October-2 November 2001, pp. 102-105.
[10] R. F. Arritt, R. C. Dugan, R. W. Uluski and T. F. Weaver, “Investigating Load Estimation Methods with the Use of AMI Metering for Distribution System Analysis,” 2012 IEEE Rural Electric Power Conference (REPC), Milwaukee, 15-17 April 2012, pp. B3-1-B3-9.
[11] L. G. Swan and V. I. Ugursal, “Modeling of End-Use Energy Consumption in the Residential Sector: A Review of Modeling Techniques,” Elsevier, Renewable and Sustainable Energy Reviews, Vol. 13, No. 8, 2009, pp. 18191835. http://dx.doi.org/10.1016/j.rser.2008.09.033
[12] A. Seppala, “Statistical Distribution of Customer Load Profiles,” Proceedings of IEEE International Conference on Energy Management and Power Delivery Volume 2, Singapore, 21-23 November 1995, pp. 696-701.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.