[1]
|
Holgate, S.T., Komaroff, A.L., Mangan, D. and Wessely, S. (2011) Viewpoint: Chronic FAtigue syndrome: Understanding a complex illness. Nature Reviews Neuroscience, 12, 539-544. doi:10.1038/nrn3087
|
[2]
|
Prins, J.B., Van der Meer, J.W.M. and Bleijenberg, G. (2006) Chronic fatigue syndrome. Lancet, 367, 346-355.
doi:10.1016/S0140-6736(06)68073-2
|
[3]
|
Goodwin, L., White, P.D., Hotopf, M., Stansfeld, S.A. and Clark, C. (2011) Psychopathology and physical activity as predictors of chronic fatigue syndrome in the 1958 british birth cohort: A replication study of the 1946 and 1970 birth cohorts. Annals of Epidemiology, 21, 343-350. doi:10.1016/j.annepidem.2010.12.003
|
[4]
|
Bassi, N., Amital, D., Amital, H., Doria, A. and Shoenfeld, Y. (2008) Chronic fatigue syndrome: characteristics and possible causes for its pathogenesis. The Israel Medical Association Journal, 10, 79-82.
|
[5]
|
Evengard, B., Jonzon, E., Sandberg, A., Theorell, T. and Lindh, G. (2003) Differences between patients with chronic fatigue syndrome and with chronic fatigue at an infectious disease clinic in Stockolm, Sweden. Psychiatry and Clinical Neurosciences, 57, 361-368.
doi:10.1046/j.1440-1819.2003.01132.x
|
[6]
|
Naess, H., Sundal, E., Myhr, K.M. and Nyland, H.I. (2010) Postinfectious and chronic fatigue syndromes: Clinical experience from a tertiary-referral centre in Norway. In Vivo, 24, 185-188.
|
[7]
|
Jammes, Y., Steinberg, J.G., Mambrini, O., Bregeon, F. and Delliaux, S. (2005) Chronic fatigue syndrome: Assessment of increased oxidative stress and altered muscle excitability in response to incremental exercise. Journal of Internal Medicine, 257, 299-310.
doi:10.1111/j.1365-2796.2005.01452.x
|
[8]
|
Jammes, Y., Steinberg, J.G., Delliaux, S. and Bregeon, F. (2009) Chronic fatigue syndrome combines increased exercise-induced oxidative stress and reduced cytokine and Hsp responses. Journal of Internal Medicine, 266, 196- 206. doi:10.1111/j.1365-2796.2009.02079.x
|
[9]
|
Manuel y Keenoy, B., Moorkens, G., Vertommen, J. and De Leeuw, I. (2001) Antioxidant status and lipoprotein peroxidation in chronic fatigue syndrome. Life Sciences, 68, 2037-2049. doi:10.1016/S0024-3205(01)01001-3
|
[10]
|
Vecchiet, J., Cipollone, F., Falasca, K., Mezzetti, A., Pizzigallo, E., Bucciarelli, T., De Laurentis, S., Affaitati, G., De Cesare, D. and Giamberardino, M.A. (2003) Relationship between musculoskeletal symptoms and blood markers of oxidative stress in patients with chronic fatigue syndrome. Neuroscience Letters, 335, 151-154.
doi:10.1016/S0304-3940(02)01058-3
|
[11]
|
Kennedy, G., Spence, V.A., McLaren, M., Hill, A., Underwood, C. and Belch, J.J. (2005) Oxidative stress levels are raised in chronic fatigue syndrome and are associated with clinical symptoms. Free Radical Biology & Medicine, 39, 584-589.
doi:10.1016/j.freeradbiomed.2005.04.020
|
[12]
|
Richards, R.S., Roberts, T.K., McGregor, N.R., Dunstan, R.H. and Butt, H.L. (2000) Blood parameters indicative of oxidative stress are associated with symptom expression in chronic fatigue syndrome. Redox Report, 5, 35-41.
|
[13]
|
Jammes, Y., Steinberg, J.G. and Delliaux, S. (2012) Chronic fatigue syndrome: Acute infection and history of physical activity affect resting levels and response to ex- ercise of plasma oxidant/antioxidant status and heat shock proteins. Journal of Internal Medicine, 272, 74-84.
doi:10.1111/j.1365-2796.2011.02488.x
|
[14]
|
Juel, C. (2006) Muscle fatigue and reactive oxygen species. The Journal of Physiology, 576, 279-288.
|
[15]
|
Jabr, R.I. and Cole, W.C. (1993) Alterations in electrical activity and membrane currents induced by intracellular oxygen-derived free radical stress in guinea pig ventricular myocytes. Circulation Research, 72, 1229-1244.
doi:10.1161/01.RES.72.6.1229
|
[16]
|
Luin, E., Giniatullin, R. and Sciancalepore, M. (2011) Effects of H2O2 on electrical membrane properties of skeletal myotubes. Free Radical Biology & Medicine, 50, 337-344. doi:10.1016/j.freeradbiomed.2010.11.015
|
[17]
|
Sjogaard, G. (1990) Exercise-induced muscle fatigue: The significance of potassium. Acta Physiologica Scandinavica. Supplementum, 593, 1-63.
|
[18]
|
Marcos, E. and Ribas, J. (1995) Kinetics of plasma potassium concentrations during exhausting exercise in trained and untrained men. European Journal of Applied Physiology, 71, 207-214. doi:10.1007/BF00854980
|
[19]
|
Fulle, S., Belia, S., Vecchiet, J., Morabito, C., Vecchiet, L. and Fano, G. (2003) Modification of the functional capacity of sarcoplasmic reticulum membranes in patients suffering from chronic fatigue syndrome. Neuromuscular Disorders, 13, 479-484.
doi:10.1016/S0960-8966(03)00042-7
|
[20]
|
Chakraborty, S.P., Das, S., Chattopadhyay, S., Tripathy, S., Dash, S.K., Pramanik, P. and Roy, S. (2012) Staphylococcus aureus infection induced redox signalling and DNA fragmentation in T-lymphocytes: possible ameliorative role of nanoconjugated vancomycin. Toxicology Mechanisms and Methods, 22, 193-204.
doi:10.3109/15376516.2011.629236
|
[21]
|
Biagoli, M.C., Kaul, P., Singh, I. and Turner, R.B. (1999) The role of oxidative stress in rhinovirus induced elabo- ration of IL-8 by respiratory epithelial cells. Free Radical Biology & Medicine, 26, 454-462.
doi:10.1016/S0891-5849(98)00233-0
|
[22]
|
Choi, A.M., Knobil, K., Otterbein, S.L., Eastman, D.A. and Jacoby, D.B. (1996) Oxidant stress responses in influenza virus pneumonia: Gene expression and transcription factor activation. American Journal of Physiology, 271, L383-L391.
|
[23]
|
Hosakote, Y.M., Liu, T., Castro, S.M., Garofalo, R.P. and Casola, A. (2009) Respiratory syncitial virus induces oxidative stress by modulating antioxidant status. American Journal of Respiratory Cell and Molecular Biology, 41, 348-357. doi:10.1165/rcmb.2008-0330OC
|
[24]
|
Al-Nimer, M.S., Mahmood, M.M. and Khazaal, S.S. (2011) Nitrostative stress status during seasonal and pdmH1N1 infection in Iraq. The Journal of Infection in Developing Countries, 5, 863-867. doi:10.3855/jidc.1505
|
[25]
|
Yamada, Y., Limmon, G.V., Zheng, D., Li, N., Li, L., Yin, L., Chow, V.T., Chen, J. and Engelward, B.P. (2012) Major shifts in the spatio-temporal distribution of lung antioxidant enzymes during influenza pneumonia. PLos One, 7, ArticleID: e31494.
doi:10.1371/journal.pone.0031494
|
[26]
|
Arnaud, S., Zattara-Hartmann, M.C., Tomei, C. and Jammes, Y. (1997) Correlation between muscle metabolism and changes in M-wave and surface electromyogram: Dynamic constant load leg exercise in untrained subjects. Muscle & Nerve, 20, 1197-1199.
doi:10.1002/(SICI)1097-4598(199709)20:9<1197::AID-MUS20>3.0.CO;2-P
|
[27]
|
Jammes, Y., Zattara-Hartmann, M.C., Caquelard, F., Arnaud, S. and Tomei, C. (1997) Electromyographic changes in vastus lateralis during dynamic exercise. Muscle & Nerve, 20, 247-249.
doi:10.1002/(SICI)1097-4598(199702)20:2<247::AID-MUS21>3.0.CO;2-Z
|
[28]
|
Wasserman, K. (1987) Determinants and detection of anaerobic threshold and consequences of exercise above it. Circulation, 76, V129-V139.
|
[29]
|
Uchiyama, M. and Mihara, M. (1978) Determination of malonedialdehyde precursor in tissues by thiobarbituric acid test. Analytical Biochemistry, 86, 271-278.
doi:10.1016/0003-2697(78)90342-1
|
[30]
|
Maickel, R.P. (1960) A rapid procedure for the determination of adrenal ascorbic acid. Application of the Sullivan and Clarke method to tissues. Analytical Biochemistry, 1, 498-501. doi:10.1016/0003-2697(60)90063-4
|
[31]
|
Mullis, R., Campbell, I.T., Wearden, A.J., Morriss, R.K. and Pearson, D.J. (1999) Prediction of peak oxygen up-take in chronic fatigue syndrome. British Journal of Sports Medicine, 33, 352-356. doi:10.1136/bjsm.33.5.352
|
[32]
|
Sargent, C., Scroop, G.C., Nemeth, P.M., Burnet, R.B. and Buckle, J.D. (2002) Maximal oxygen uptake and lactate metabolism are normal in chronic fatigue syndrome. Medicine & Science in Sports & Exercise, 34, 51-56.
doi:10.1097/00005768-200201000-00009
|
[33]
|
Echtay, K.S., Roussel, D., St-Pierre, J., Jekabsons, M.B., Cadenas, S., Stuart, J.A., Harper, J.A., Roebuck, S.J., Morrison, A., Pickering, S., Clapham, J.C. and Brand, M.D. (2002) Superoxide activates mitochondrial uncoupling proteins. Nature, 415, 96-99. doi:10.1038/415096a
|
[34]
|
Amel Kashipaz, M.R., Swinden, D., Todd, I. and Powell, R.J. (2003) Normal production of inflammatory cytokines in chronic fatigue and fibromyalgia syndromes determined by intracellular cytokine staining in short-term cultured blood mononuclear cells. Clinical & Experimental Immunology, 132, 360-365.
doi:10.1046/j.1365-2249.2003.02149.x
|
[35]
|
Vollmer-Conna, U., Cameron, B., Hadzi-Pavlovic, D., Singletary, K., Davenport, T., Vernon, S., Reeves, W.C., Hickie, I., Wakefield, D., Lloyd, A.R. (2007) Dubbo Infective Outcomes Study Group. Postinfective fatigue syndrome is not associated with altered cytokine production. Clinical Infectious Diseases, 45, 732-735.
doi:10.1086/520990
|
[36]
|
Gaab, J., Rohleder, N., Heitz, V., Engert, V., Schad, T., Schürmeyer, T.H. and Ehlert, U. (2005) Stress-induced changes in LPS-induced pro-inflammatory cytokine production in chronic fatigue syndrome. Pychoneuroendocrinology, 30, 188-198.
|
[37]
|
Chao, C.C., Janoff, E.N., Hu, S.X., Thoma, K., Gallagher, M., Tsang, M. and Peterson, P.K. (1991) Altered cytokine release in peripheral blood mononuclear cell cultures from patients with the chronic fatigue syndrome. Cytokine, 3, 292-298. doi:10.1016/1043-4666(91)90497-2
|