Glycemic responses to glycemia-targeted specialized-nutrition beverages with varying carbohydrates compared to a standard nutritional beverage in adults with type 2 diabetes

DOI: 10.4236/abb.2013.49A001   PDF   HTML     4,280 Downloads   7,182 Views   Citations


Background: Postprandial plasma glucose concentration is an important diabetes management target. Glycemia-targeted specialized-nutrition (GTSN) beverages, containing various quantities and types of carbohydrates (CHO), have been formulated to blunt postprandial hyperglycemia. The objective of this research was to evaluate the effectiveness of these products on postprandial glycemic and hormonal responses based on comparisons of GTSN with differing carbohydrate quantities or types. Methods: In two randomized, double-blind, crossover studies, participants (mean age 61 years) with type 2 diabetes consumed GTSN in a meal tolerance test. In the CHO Quantity Study, a standard nutritional beverage (STD) was compared to a low carbohydrate nutritional beverage with tapioca dextrin (GTSN-TDX) and a balanced carbohydrate nutritional beverage containing a blend of the slowly-digesting carbohydrates maltodextrin and sucromalt (GTSN-SDC). In the CHO Type Study, the GTSN beverages had similar carbohydrate quantities but varied in carbohydrate composition with GTSN-SDC compared to a formula with tapioca starch and fructose (GTSN-TS&F), and one with isomaltulose and resistant starch (GTSN-I&RS). Postprandial (0-240 min) concentrations of blood glucose, insulin (CHO Quantity Study only) and glucagon-like-peptide (GLP)-1 (CHO Quantity Study only) were measured. Results: Despite having substantially different carbohydrate quantities, the GTSN blunted the glucose positive area under the curve (AUC0-240 min) by 65% to 82% compared to the STD formulation (p < 0.001). GTSN also elicited ~50% lower insulin positive AUC0-240 min (p < 0.05), while postprandial GLP-1 responses were increased (p = 0.018) vs. STD. In the CHO Type Study, glucose positive AUC0-240 min tended to be lower for GTSN-SDC (1477 ± 460) than GTSN-TS&F (2203 ± 412; p = 0.062) and GTSN-I&RS (2190 ± 412; p = 0.076). No differences were observed between GTSN-TS&F and GTSN-I&RS. Conclusions: These results demonstrate the effectiveness of several GTSN products and suggest that both CHO quantity and type play important roles in postprandial glycemic response in men and women with type 2 diabetes. Furthermore, GTSN products containing slow-digesting carbohydrates can blunt postmeal glucose and insulin concentration despite delivering greater total grams of CHO, which provides a dietary benefit for people with diabetes.

Share and Cite:

Devitt, A. , Williams, J. , Choe, Y. , Hustead, D. and Mustad, V. (2013) Glycemic responses to glycemia-targeted specialized-nutrition beverages with varying carbohydrates compared to a standard nutritional beverage in adults with type 2 diabetes. Advances in Bioscience and Biotechnology, 4, 1-10. doi: 10.4236/abb.2013.49A001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Dall, T.M., Zhang, Y., Chen, Y.J., Quick, W.W., Yang, W.G. and Fogli, J. (2010) The economic burden of diabetes. Health Affairs, 29, 297-303. doi:10.1377/hlthaff.2009.0155
[2] American Diabetes Association: National Diabetes Fact Sheet, 2005.
[3] Heine, R.J. and Dekker, J.M. (2002) Beyond postprandial hyperglycemia: metabolic factors associated with cardiovascular disease. Diabetologia, 45, 461-475. doi:10.1007/s00125-001-0726-0
[4] American Diabetes Association (2011) Standards of Medical Care in Diabetes—2011. Diabetes Care, 34, S11-S61. doi:10.2337/dc11-S011
[5] International Diabetes Federation: 2011 Guideline for management of postmeal glucose in diabetes.
[6] Abrahamson, M.J. (2004) Optimal glycemic control in type 2 diabetes mellitus: fasting and postprandial glucose in context. Archives of Internal Medicine, 164, 486-491. doi:10.1001/archinte.164.5.486
[7] Ceriello, A. (2000) The post-prandial state and cardiovascular disease: Relevance to diabetes mellitus. Diabetes/Metabolism Research and Reviews, 16, 125-132. doi:10.1002/(SICI)1520-7560(200003/04)16:2<125::AID-DMRR90>3.0.CO;2-4
[8] Ceriello, A. (2003) The possible role of postprandial hyperglycaemia in the pathogenesis of diabetic complications. Diabetologia, 46, M9-M16.
[9] Ceriello, A. (2005) Postprandial hyperglycemia and diabetes complications: Is it time to treat? Diabetes, 54, 1-7. doi:10.2337/diabetes.54.1.1
[10] Woerle, H.J., Neumann, C., Zschau, S., Tenner, S., Irsigler, A., Schirra, J., Gerich, J.E. and Goke, B. (2007) Impact of fasting and postprandial glycemia on overall glycemic control in type 2 diabetes. Importance of postprandial glycemia to achieve target HbA1c levels. Diabetes Research and Clinical Practice, 77, 280-285. doi:10.1016/j.diabres.2006.11.011
[11] Peters, A.L. and Davidson, M.B. (1992) Effects of various enteral feeding products on postprandial blood glucose response in patients with type I diabetes. Journal of Parenteral and Enteral Nutrition, 16, 69-74. doi:10.1177/014860719201600169
[12] MacCargar, L.J., Innis, S.M., Bowron, E., Leichter, J., Dawson, K., Toth, E. and Wall, K. (1998) Effect of enteral nutritional products differing in carbohydrate and fat on indices of carbohydrate and lipid metabolism in patients with NIDDM. Molecular and Cellular Biochemistry, 188, 81-89. doi:10.1023/A:1006872506658
[13] Sanz-Paris, A., Calvo, L., Guallard, A., Salazar, I. and Albero, R. (1998) High-fat versus high-carbohydrate enteral formulae: effect on blood glucose, C-peptide and ketones in patients with type 2 diabetes treated with insulin or sulfonylurea. Nutrition, 14, 840-845. doi:10.1016/S0899-9007(98)00124-5
[14] del Carmen Crespillo, M., Olivera, G., de Adana, M.S., Rojo-Martínez, G., Garcia-Aleman, J., Olivera, P., Soriguer, F. and Munoz, A. (2003) Metabolic effects of an enteral nutrition formula for diabetes: Comparison with standard formulas in patients with type 1 diabetes. Clinical Nutrition, 22, 483-487. doi:10.1016/S0261-5614(03)00047-5
[15] Hofman, Z., van Drunen, J.D.E., de Later, C. and Kuipers, H. (2004) The effect of different nutritional feeds on the postprandial glucose response in healthy volunteers and patients with type II diabetes. European Journal of Clinical Nutrition, 58, 1553-1556. doi:10.1038/sj.ejcn.1602007
[16] Elia, M., Ceriello, A., Laube, H., Sinclair, A.J., Engfer, M. and Stratton, R.J. (2005) Enteral nutritional support and use of diabetes-specific formulas for patients with diabetes: A systematic review and meta-analysis. Diabetes Care, 28, 2267-2279. doi:10.2337/diacare.28.9.2267
[17] León-Sanz, M., García-Luna, P.P., Planas, M., Sanz-París, A., Gómez-Candela, C. and Casimiro, C. (2005) Glycemic and lipid control in hospitalized type 2 diabetic patients: Evaluation of 2 enteral nutrition formulas (low carbohydrate-high monounsaturated fat vs. high carbohydrate). Journal of Parenteral and Enteral Nutrition, 29, 21-29. doi:10.1177/014860710502900121
[18] González-Ortiz, M., Martínez-Abundis, E., Hernández-Salazar, E., Kam-Ramos, A.M. and Robles-Cervantes, J.A. (2006) Effect of a nutritional liquid supplement designed for the patient with diabetes mellitus (Glucerna SR) on the postprandial glucose state, insulin secretion and insulin sensitivity in healthy subjects. Diabetes, Obesity and Metabolism, 8, 331-335.
[19] González-Ortiz, M., Ramos-Zavala, M.G., González-López, R.C., Robles-Cervantes, J.A. and Martinez-Abundis, E. (2009) Effect of 2 liquid nutritional supplements for diabetes patients on postprandial glucose, insulin secretion and insulin sensitivity in healthy individuals. Journal of Parenteral and Enteral Nutrition, 33, 67-70. doi:10.1177/0148607108327048
[20] Li, Y.X., Zeng, J.B., Yu, K., Sun, Q., Liu, Q.Y., Qin, W., Zhang, Q., Yu, J.C. and Wang, H. (2008) Beneficial effects of a diabetes specific formula on insulin sensitivity and free fatty acid in patients with type 2 diabetes mellitus. Chinese Medical Journal, 121, 691-695.
[21] Voss, A.C., Maki, K.C., Garvey, W.T., Hustead, D.S., Alish, C., Fix, B. and Mustad, V.A. (2008) Effect of two carbohydrate-modified tube-feeding formulas on metabolic responses in patients with type 2 diabetes. Nutrition, 24, 990-997. doi:10.1016/j.nut.2008.06.009
[22] Pohl, M., Mayr, P., Mertl-Roetzer, M., Lauster, F., Haslbeck, M., Hipper, B., Steube, D., Tietjen, M., Eriksen, J. and Rahlfs, V.W. (2009) Glycemic control in patients with type 2 diabetes mellitus with a disease-specific enteral formula: Stage II of a randomized, controlled multicenter trial. Journal of Parenteral and Enteral Nutrition, 33, 37-49. doi:10.1177/0148607108324582
[23] Alish, C.J., Garvey, W.T., Maki, K.C., Sacks, G.S., Hustead, D.S., Hegazi, R.A. and Mustad, V.A. (2010) A diabetes-specific enteral formula improves glycemic variability in patients with type 2 diabetes. Diabetes Technology & Therapeutics, 12, 419-425.
[24] Craig, L.D., Nicholson, S., Silverstone, F.A. and Kennedy, R.D. (1998) Use of a reduced-carbohydrate, modified-fat enteral formula for improving metabolic control and clinical outcomes in long-term care residents with type 2 diabetes: Results of a pilot trial. Nutrition, 14, 529-534. doi:10.1016/S0899-9007(98)00062-8
[25] Vanschoonbeek, K., Lansink, M., van Laere, K.M.J., Senden, J.M.G., Verdijk, L.B. and van Loon, L.J.C. (2009) Slowly digestible carbohydrate sources can be used to attenuate the postprandial glycemic response to the ingestion of diabetes-specific enteral formulas. Diabetes Education, 35, 631-640.
[26] Garg, G. (1998) High-monounsaturated-fat diets for patients with diabetes mellitus: A meta-analysis. The American Journal of Clinical Nutrition, 67, 577S-582S.
[27] Yokoyama, J., Someya, Y., Yoshihara, R. and Ishii, H. (2008) Effects of high-monounsaturated fatty acid enteral formula versus high-carbohydrate enteral formula on plasma glucose concentration and insulin secretion in healthy individuals and diabetic patients. Journal of International Medical Research, 36, 137-146. doi:10.1177/147323000803600117
[28] Heine, R.J., Balkau, B., Ceriello, A., DelPrato, S., Horton, E.S. and Taskinen, M.R. (2004) What does postprandial hyperglycaemia mean? Diabetic Medicine, 21, 208-213. doi:10.1111/j.1464-5491.2004.01149.x
[29] Tushuizen, M.E., Diamant, M. and Heine, R.J. (2005) Postprandial dysmetabolism and cardiovascular disease in type 2 diabetes. Postgraduate Medical Journal, 81, 1-6. doi:10.1136/pgmj.2004.020511
[30] Marsh, K., Barclay, A., Colagiuri, S. and Brand-Miller, J. (2011) Glycemic index and glycemic load of carbohydrates in the diabetes diet. Current Diabetes Reports, 11, 120-127. doi:10.1007/s11892-010-0173-8
[31] Klimt, C.R., Prout, T.E., Bradly, R.F., Dolger, H., Fisher, G., Gastineau, C.F., Marks, H., Meinert, C.L., Schumacher, O.P., Cooper, G.R., Mather, A., Hainline, A. and Andres, R. (1969) Standardization of the oral glucose tolerance test: Report of the Committee on Statistics of the American Diabetes Association. Diabetes, 18, 299-307.
[32] Wolever, T.M.S., Jenkins, D.J.A., Jenkins, A.L. and Josee, R.G. (1991) The glycemic index: Methodology and clinical implications. The American Journal of Clinical Nutrition, 54, 846-854.
[33] Brouns, G.,Bjorck, I., Frayn, K.N., Gibbs, A.L., Lang, V., Slama, G. and Wolever, T.M. (2005) Glycaemic index methodology. Nutrition Research Reviews, 18, 145-171. doi:10.1079/NRR2005100
[34] Jenkins, D.J., Wolever, T.M., Taylor, R.H., Barker, H., Fielden, H., Baldwin, J.M., Bowling, A.C., Newman, H.C., Jenkins, A.L. and Goff, D.V. (1981) Glycemic index of foods: A physiological basis for carbohydrate exchange. The American Journal of Clinical Nutrition, 34, 362-366.
[35] Wolever, T., Jenkins, D., Vuksan, V., Jenkins, A.L., Buckley, G.C., Wong, G.S. and Josse, R.G. (1992) Beneficial effect of a low glycaemic index diet in type 2 diabetes. Diabetic Medicine, 9, 451-458. doi:10.1111/j.1464-5491.1992.tb01816.x
[36] Brand-Miller, J., Hayne, S., Petocz, P. and Colagiuri, S. (2003) Low-glycemic index diets in the management of diabetes: A meta-analysis of randomized controlled trials. Diabetes Care, 26, 2261-2267. doi:10.2337/diacare.26.8.2261
[37] Brand-Miller, J.C. (2004) Postprandialglycemia, glycemic index, and the prevention of type 2 diabetes. American Journal of Clinical Nutrition, 80, 243-244.
[38] Hofman, Z., van Drunen, J.D.E. and Kuipers, H. (2006) The glycemic index of standard and diabetes-specific enteral formulas. Asia Pacific Journal of Clinical Nutrition, 15, 412-417.
[39] Barclay, A.W., Petocz, P., McMillan-Price, J., Flood, V.M., Prvan, T. and Mitchell, P., et al. (2008) Glycemic index, glycemic load, and chronic disease risk—A metaanalysis of observational studies. American Journal of Clinical Nutrition, 87, 627-637.
[40] Wheeler, M.L. and Pi-Sunyer, F.X. (2008) Carbohydrate issues: Type and amount. Journal of the American Dietetic Association, 108, S34-S39. doi:10.1016/j.jada.2008.01.024
[41] Grysman, A., Carlson, T. and Wolever, T.M. (2008) Effects of sucromalt on postprandial responses in human subjects. European Journal of Clinical Nutrition, 62, 1364-1371. doi:10.1038/sj.ejcn.1602890
[42] Fastinger, N.D., Karr-Lilienthal, L.K., Spears, J.K., Swanson, K.S., Zinn, K.E., Nava, G.M., Ohkuma, K., Kanahori, S., Gordon, D.T. and Fahey Jr., G.C. (2008) A novel resistant maltodextrin alters gastrointestinal tolerance factors, fecal characteristics and fecal microbiota in healthy adult humans. Journal of the American College of Nutrition, 27, 356-366. doi:10.1080/07315724.2008.10719712
[43] Dahlqvist, A. (1964) Method for assay of intestinal disaccharidases. Analytical Biochemistry, 7, 18-25. doi:10.1016/0003-2697(64)90115-0
[44] MacDonald, I. (1983) The bio-availability of isomaltulose in man and rat. Nutrition reports international, 28, 1083-1090.
[45] Liao, Z.H., Li, Y.B., Yao, B., Fan, H.D., Hu, G.L. and Weng, J.P. (2001) The effect of isomaltulose on blood glucose and lipids for diabetic subjects. Diabetes, 50, A366.
[46] Ceriello, A., Lansink, M., Rouws, C.H.F.C., van Laere, K.M.J. and Frost, G.S. (2009) Administration of a new diabetes-specific enteral formula results in an improved 24 h glucose profile in type 2 diabetic patients. Diabetes Research and Clinical Practice, 84, 259-266. doi:10.1016/j.diabres.2009.02.013
[47] Holub, I., Gostner, A., Theis, S., Nosek, L., Kudlich, T., Melcher, R. and Scheppach, W. (2010) Novel findings on the metabolic effects of the low glycaemic carbohydrate isomaltulose (PalatinoseTM). British Journal of Nutrition, 103, 1730-1737. doi:10.1017/S0007114509993874
[48] Gunther, S. and Heymann, H. (1998) Diand oligosaccharide substrate specificities and subsite binding energies of pig intestinal glucoamylase-maltase. Archives of Biochemistry and Biophysics, 354, 111-116. doi:10.1006/abbi.1998.0684
[49] Basciano, H., Federico, L. and Adeli, K. (2005) Fructose, insulin resistance, and metabolic dyslipidemia. Nutrition & Metabolism, 21, 5. doi:10.1186/1743-7075-2-5
[50] Nuttall, F.Q., Mooradian, A.D., Gannon, M.C., Billington, C. and Krezowski, P. (1984) Effect of protein ingestion on the glucose and insulin response to a standardized oral glucose load. Diabetes Care, 7, 465-470. doi:10.2337/diacare.7.5.465
[51] Tessari, P., Kiwanuka, E., Cristini, M., Zaramella, M., Enslen, M., Zurlo, C. and Carci-Rodendas, C. (2007) Low versus fast proteins in the stimulation of beta-cell response and the activation of the enter-insular axis in type 2 diabetes. Diabetes/Metabolism Research and Reviews, 23, 378-385. doi:10.1002/dmrr.698
[52] Karamanlis, A., Chaikomin, R., Doran, S., Bellon, M., Bartholomeusz, F.D., Wishart, J.M., Jones, K.L., Horowitz, M. and Rayner, C.K. (2007) Effects of protein on glycemic and incretin responses and gastrin emptying after oral glucose in healthy subjects. The American Journal of Clinical Nutrition, 86, 1364-1368.
[53] Frid, A.H., Nilsson, M., Holst, J.J. and Bjorck, I.M. (2005) Effect of whey on blood glucose and insulin responses to composite breakfast and lunch meals in type 2 diabetic subjects. The American Journal of Clinical Nutrition, 82, 69-75.
[54] Manders, R.J., Wagenmakers, A.J., Koopman, R., Zorenc, A.H., Menheere, P.P., Schaper, N.C., Saris, W.H. and van Loon, L.J. (2005) Co-ingestion of a protein hydrolysate and amino acid mixture with carbohydrate improves plasma glucose disposal in patients with type 2 diabetes. The American Journal of Clinical Nutrition, 82, 76-83.
[55] Vinik, A.I. and Jenkins, D.J.A. (1988) Dietary fiber in management of diabetes. Diabetes Care, 11, 160-173. doi:10.2337/diacare.11.2.160
[56] Jenkins, A.L., Jenkins, D.J., Zdravkovic, U., Wursch, P. and Vuksan, V. (2002) Depression of the glycemic index by high levels of beta-glucan fiber in two functional foods tested in type 2 diabetes. European Journal of Clinical Nutrition, 56, 622-628. doi:10.1038/sj.ejcn.1601367
[57] Nauck, M.A. (2004) Glucagon-like peptide 1 (GLP-1) in the treatment of diabetes. Hormone and Metabolic Research, 36, 852-858. doi:10.1055/s-2004-826175
[58] Holst, J.J., Vilsboll, T. and Deacon, C.F. (2009) The incretin system and its role in type 2 diabetes mellitus. Molecular and Cellular Endocrinology, 297, 127-136. doi:10.1016/j.mce.2008.08.012
[59] Unger, J. (2011) Clinical efficacy of GLP-1 agonists and their place in the diabetes treatment algorithm. The Journal of the American Osteopathic Association, 111, eS2-eS9.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.